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ETH Zürich



Acknowledgements

I would like to extend my deepest gratitude to Prof. Dr. Tobias Hagen, whose patience and

unwavering belief in me have been pivotal throughout this PhD journey. His guidance has been

an invaluable resource, providing me with the direction and support necessary to navigate the

complexities of this research. Prof. Dr. Hagen’s insightful feedback and high standards have

continually pushed me to refine my work and expand my understanding, encouraging me to

pursue excellence in both my methodology and analysis. I am immensely grateful for his trust

in my abilities and for his commitment to fostering my development as a researcher.

Throughout this process, Prof. Dr. Hagen has been a steadfast source of encouragement, re-

minding me of the importance of resilience and diligence in the face of challenges. His dedication

to my success and his willingness to share his vast knowledge have enriched my experience and

significantly shaped the trajectory of my work. I am sincerely thankful for his mentorship, which

has not only guided my research but has also profoundly influenced my personal and professional

growth.

Siavash Saki

Berlin, October 2024



Abstract

Parking search behavior is a significant component of urban mobility, contributing to conges-

tion, emissions, and inefficiencies within transportation systems. Despite its impact, accurately

quantifying parking search behavior remains challenging due to methodological limitations in

existing research. Traditional approaches, such as surveys and field experiments, often suffer

from biases and assumptions that limit the reliability and generalizability of their findings. The

recent advancement of GPS technology offers new possibilities for capturing real-world data on

parking search behavior, yet these studies frequently lack a clear framework for defining search

starting and ending points, leading to inconsistencies in the reported data.

This dissertation aims to develop an empirical framework for understanding parking search

behavior, focusing on capturing accurate data with minimal assumptions. The research is struc-

tured around three key objectives: First, to explore the initiation of parking search by identifying

factors that influence when and where drivers begin searching for parking. Second, to determine

the key factors affecting parking search duration and quantify their effects using data-driven

methodologies. Third, to develop a machine learning model capable of classifying GPS trajec-

tory data to identify and analyze parking search behavior.

Through an integrated approach, this research leverages GPS data to collect detailed, ground-

truth information across the entire parking search process—from driving to parking and walking

to the final destination. This methodology not only addresses existing gaps in the literature but

also provides practical insights for urban planners and policymakers. By offering a compre-

hensive understanding of parking search behavior, the findings of this dissertation contribute

to developing targeted strategies for reducing cruising for parking and improving urban mo-

bility. The goal is to advance both theoretical knowledge and practical applications in urban

transportation, paving the way for smarter, more sustainable city planning.

Keywords: Parking Search Behavior, Urban Mobility, GPS Data Analysis, Empirical Frame-

work, Transportation Planning
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1 Introduction

1.1 Motivation and problem statement

Urban mobility is a cornerstone of modern city life, essential for supporting economic activ-

ity, social interactions, and overall quality of life. As urban populations continue to expand,

cities face mounting challenges in managing transportation demands. This increased pressure

on transportation infrastructure often results in congestion, pollution, and inefficiencies that

compromise environmental sustainability and reduce urban livability (Giffinger, 2021).

To address these challenges, cities have increasingly focused on optimizing their transportation

systems to ensure the efficient movement of people and goods. However, as transportation

systems evolve, so too do the complexities associated with managing urban traffic. Urban road

networks must accommodate a diverse array of users, from personal vehicles and public transit

to bicycles and pedestrians, all of whom compete for limited space (Gössling et al., 2016). As

a result, traffic congestion is an inevitable outcome, particularly in dense city centers where

the demand for road space frequently exceeds the available capacity (Afrin & Yodo, 2020).

Managing limited resources like road capacity and parking spaces is critical for ensuring smooth

traffic flow and minimizing environmental impacts (Biswas et al., 2017).

Parking management, in particular, is a vital component of urban traffic management (Sándor

& Csiszár, 2015). Effective parking strategies alleviate congestion and reduce emissions by

ensuring that parking spaces are used efficiently (Litman, 2016). However, in many urban areas,

the demand for parking far outstrips available supply, leading to a widespread issue known as

”cruising for parking” (Shoup, 2006). As drivers navigate through busy city streets in search

of available curbside parking, they inadvertently add to traffic density, fuel consumption, and

emissions. Even when parking supply and demand are balanced, the lack of real-time information

on available parking spaces forces drivers to cruise, leading to inefficient traffic flows (Arnott

& Rowse, 1999). Although this behavior may seem brief compared to the overall trip, it has

substantial cumulative impacts on urban environments.

Cruising for parking is particularly prevalent in cities where curbside parking is more affordable

or more convenient than off-street options (Shoup, 2006). This preference drives a considerable

portion of urban traffic, as drivers circulate through neighborhoods, adding to both local con-

gestion and environmental degradation. Beyond its direct impacts on traffic, the parking search

process is often frustrating for drivers, who tend to perceive this portion of their journey as more

stressful and time-consuming than other parts of their trip (Weis et al., 2021).
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Understanding parking search behavior is essential for devising effective urban traffic manage-

ment strategies (Verhoef et al., 1995). Historically, research in this area has been hindered by

data limitations, relying on surveys or assumptions that lack precision and often fail to capture

the real-time dynamics of parking search behavior. With advancements in technology, partic-

ularly the increased availability of GPS data, new avenues for understanding parking search

patterns have emerged (Montini et al., 2012). GPS data provide an unprecedented level of

detail on vehicle movements, allowing for a comprehensive analysis of parking search behavior

across diverse urban contexts (Mannini et al., 2017).

The scientific motivation for this research stems from significant gaps in the literature regarding

the empirical measurement and modeling of parking search behavior. Existing studies often rely

on estimating parking search durations and impacts, potentially leading to biased or incomplete

conclusions. Furthermore, few models adequately address the nuanced transition from driving

to parking search, or how contextual factors—such as driver demographics, time of day, and

urban density—affect parking search patterns.

This research aims to address these gaps by utilizing a novel data collection approach that

captures detailed, ground-truth GPS data on parking search behavior. Through a custom-built

app, this study records the starting point of each parking search, tracks the entire search process,

and collects data on the complete journey, including walking to the final destination (“Start2Park

Research Project”, 2024). This data enables a more accurate and holistic understanding of the

factors influencing parking search behavior, the typical duration of searches, and the decision-

making processes involved.

In summary, the motivation for this research is driven by both the need to advance scientific

knowledge on parking search behavior and the practical challenges of urban mobility. By devel-

oping robust models and frameworks, this research seeks to inform urban planning and traffic

management policies, ultimately contributing to a reduction in the negative impacts of cruising

for parking on urban environments.

1.2 Theoretical Background and State of Research

1.2.1 What Is Parking Search and Why Does It Occur?

Cruising for parking is the practice of driving around in search of an available curbside parking

spot (Shoup, 2005). As can be seen in Figure 1.1, it has three main drivers: 1) the scarcity of

readily available parking spaces given the demand for parking at the given price (in the sense

of generalized costs) of parking, 2) the characteristics of parking spots not matching drivers’

preferences, and 3) the lack of complete information about parking availability. These drivers

are influenced by various factors, including supply and demand, human behavior and decision-

making, psychological factors, environmental and urban planning factors, technological and
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Figure 1.1: Key Drivers of Parking Search

information factors, traffic flow and congestion, economic and social costs, as well as policy and

management.

The parking search process is fundamentally governed by the principles of supply and demand

(Shoup, 2005). The curbside is a monopoly good managed by local governments, making curb-

side parking pricing a government decision rather than a market-driven one (Manville & Pinski,

2021). The imbalance between the supply of parking spaces and the demand for them at its

given price is the first cause of parking search (Inci et al., 2017). In areas with high demand,

such as city centers and popular venues, the number of available parking spaces is often insuf-

ficient to meet the number of vehicles looking to park. This scarcity leads to a competition for

limited parking spots, resulting in drivers cruising around to find an available space (Fulman &

Benenson, 2018). This phenomenon is exacerbated in densely populated areas where the supply

of parking cannot keep up with the demand.

In cases with sufficient parking supply, parking searches can still occur due to several factors.

Uneven distribution and varying driver preferences lead to local mismatches between demand

and supply, prompting drivers to search for available spaces (Brooke et al., 2014; Arnott & Inci,

2006). These preferences are not static; they differ from one driver to another and from one

journey to the next, and can even change during a trip as search times extend. This dynamic

nature adds complexity to the parking search process, making it more challenging to explore

and predict.

Additionally, even when parking supply meets or exceeds demand and the available spots align

with drivers’ preferences, the lack of real-time information about vacant spots forces drivers to

continue searching (Arnott & Rowse, 1999). Without knowing the exact locations of available

spaces, drivers must engage in a trial-and-error process to find parking.
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1.2.2 The Dimensions of Individual Parking Search Behavior

Human behavior and decision-making also play a crucial role in parking search. Almost in all

parking search models, drivers are assumed to be rational actors who seek to maximize their

utility. When searching for parking, they weigh the costs, such as time spent searching, (walking)

distance from their destination, and parking fees, against the benefits, such as proximity to their

destination and the safety of the area (Thompson & Richardson, 1998). This decision-making

process can lead to parking searches, especially when drivers prioritize free or low-cost parking

options (Shoup, 2005).

Psychological factors such as expectation and frustration may further influence parking search

behavior (Ponnambalam & Donmez, 2020). Drivers’ expectations of quickly finding a parking

spot can lead to frustration when these expectations are not met, sometimes resulting in subop-

timal parking choices. The uncertainty of finding a parking spot creates a scenario where drivers

must constantly reassess their strategies, adding stress and frustration (Vohs et al., 2018). This

behavior often disrupts regular traffic flow, as drivers tend to slow down, stop, or circle while

searching, contributing to congestion and impacting overall traffic efficiency.

Environmental and urban planning factors significantly impact parking availability, which means

parking supply and demand. Urban design and zoning regulations dictate the number and type of

parking spaces available. For instance, in Frankfurt am Main in Germany, the implementation of

so-called ”bike-friendly streets” has significantly reduced the number of available parking spots,

aiming to encourage the use of public transportation, walking, and cycling (Knese et al., 2024).

This approach prioritizes sustainable transportation options but also impacts the ease of finding

parking for those who choose the car.

1.2.3 Effects of Parking Search

Parking search significantly contributes to traffic flow and congestion (Arnott & Inci, 2006).

It can lead to increased vehicle emissions and reduced traffic efficiency. From the individual

perspective, the time spent searching for parking translates to lost productivity and increased

fuel consumption, which has both economic and environmental implications. Socially, excessive

parking search can lead to stress and frustration, exacerbating road rage and aggressive driving

behaviors (Melnyk et al., 2019).

In addition to the direct impacts of parking search on traffic congestion and emissions, there is

also a broader, macro-level effect on parking demand and even car traffic. Millard-Ball et al.

(2020) suggest that drivers often anticipate long parking search durations in high-demand areas.

As a result, they may start searching for parking earlier, lower their preferences, and settle for

a spot sooner if it meets their basic needs. In some cases, drivers might avoid parking in these

congested areas altogether. These behaviors help alleviate parking demand, reducing parking
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search traffic and creating a form of self-regulation (Schäfer et al., 2024), where parking demand

naturally decreases in areas expected to have high parking pressure.

1.2.4 Policies to Affect Parking Search

Policy and management strategies can mitigate the impacts of parking search. As explained in

Section 1.2.1, there are three categories of causes for parking search. Policies that directly or

indirectly affect parking search can be systemized accordingly.

For instance, parking supply can be managed through strategies like residential parking permits

(Van Ommeren et al., 2011), time-limited parking zones (Simićević et al., 2013), and no-parking

areas (Shiftan & Burd-Eden, 2001). Parking demand, in turn, can be reduced by increasing on-

street parking prices, especially when the cost becomes relatively higher than parking garages,

effectively reallocating demand away from on-street spaces. Policies affecting mode choice can

also affect parking demand; for example, offering discounted public transit subscriptions instead

of free parking could encourage more employees to choose public transportation over driving

(Tchervenkov, 2022). Apart from this, broader policies affecting car use—such as taxes, city

tolls, and the pricing and availability of alternative transportation modes—can further reduce

parking demand and the associated parking search.

As mentioned in Section 1.2.1, even if supply and demand are quantitatively equal, there could be

parking search due to missing information. For this reason, cities began implementing parking

guidance systems in the 1990s to help drivers locate spaces in parking garages (Axhausen et

al., 1993). Recently, advances in real-time data analysis have further improved these systems

through the development of Intelligent Parking Systems (IPS) (Caicedo, 2010; Teodorović &

Lučić, 2006; Shin & Jun, 2014). IPS also play a critical role by using sensors, cameras, and

mobile applications to provide drivers with real-time information on available parking spots.

Different studies have employed simulation models to assess the effectiveness of this innovation,

demonstrating its potential to streamline urban mobility by adapting pricing in response to real-

time conditions (Mei et al., 2020; Rodŕıguez et al., 2022). From early parking guidance systems

(Axhausen et al., 1993; Thompson & Bonsall, 1997) to more recent smartphone applications

(Rong et al., 2018; Arora et al., 2019; Dalla Chiara et al., 2022), the use of real-time data

through IPS can help to overcome the information problem and can reduce the time drivers

spend searching for parking and cut down on emissions (Caicedo, 2010; Vlahogianni et al., 2016;

Alam et al., 2018).

There are also policy options addressing the third category of causes for parking search, which

involves the mismatch with driver preferences. This requires a tailored approach, as these

preferences can vary widely. For example, individuals may prioritize different aspects of parking:

some may prefer a shorter walking distance to their destination, such as older adults or those

with limited mobility, while others with a high value of time may favor reduced search durations

(van Ommeren et al., 2021), often choosing paid parking garages to minimize the time spent
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looking for a spot (Harmatuck, 2007).

Additionally, certain groups have distinct parking needs. People with disabilities, parents with

young children, electric vehicle (EV) owners, employees, and hospital visitors all benefit from

designated parking arrangements tailored to their specific requirements. For example, larger

spaces located closer to entrances accommodate individuals with disabilities or parents man-

aging strollers, while EV owners require spaces equipped with charging stations. By providing

targeted parking solutions for these groups, cities can meet diverse parking demands, ultimately

enhancing accessibility and possibly affecting search times (Costa et al., 2014; Marsden, 2006;

Bonges & Lusk, 2016; Ross & Buliung, 2019; Shaheen et al., 2010).

1.2.5 A brief overview of approaches to modeling parking search

The study of parking search behavior has matured from basic theoretical approaches to sophis-

ticated models that integrate cutting-edge technology and big data analytics. This progression

mirrors the advancements in urban planning and computational methods. Here, the evolution

of these models is traced, highlighting key studies and methodologies that have shaped this field

of research.

Initial explorations into parking behavior were fundamentally theoretical, laying the groundwork

for subsequent empirical and modeling efforts (Tamari, 1982; Van Der Goot, 1982; Thompson &

Richardson, 1998). The pioneering work of Polak and Axhausen (1990) initially framed parking

search behavior within the broader context of transportation decision-making, suggesting that

drivers’ choices were significantly influenced by their knowledge of the spatial and temporal

availability of parking spaces, as well as associated costs. These early models typically empha-

sized the role of driver experience and expected utility in determining parking decisions, positing

that drivers aim to minimize the expected costs of time and parking fees.

From early on, parking choice models became a focal point in the literature. These models

analyze the selection process among different parking options, such as on-street versus off-street

parking, influenced by factors like cost, distance, and the expected time to find a spot. Axhausen

and Polak (1991) were among the first to employ a choice model to examine how these factors

drive parking decisions, incorporating the duration of the search as a significant determinant in

their model. Subsequent studies (Hunt & Teply, 1993; Sattayhatewa & Smith Jr, 2003; Bonsall

& Palmer, 2004; Ottomanelli et al., 2011; Waraich & Axhausen, 2012; Ibeas et al., 2014; Soto et

al., 2018) expanded these models to include dynamic elements such as the real-time availability

of parking spaces and varying price conditions, enhancing the predictive power and relevance of

parking behavior models in urban planning.

The adoption of transport demand simulation models marked a significant evolution in the field,

offering researchers tools to explore and predict parking behavior under a variety of hypothetical

scenarios. These models, including agent-based models (ABM) (Benenson et al., 2008; Martens

& Benenson, 2008; Dieussaert et al., 2009; Waraich & Axhausen, 2012; Horni et al., 2013; Levy
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et al., 2013; Fulman & Benenson, 2018), discrete event simulation (DES) (Surpris et al., 2013;

Alghwiri et al., 2017; Soto Ferrari et al., 2021) , microsimulations (Rodŕıguez et al., 2022), and

macrosimulations (Leclercq et al., 2017; Gu et al., 2020; Zhao et al., 2021), help analyze and

predict drivers’ behaviors in searching for parking, thereby guiding policy and infrastructure

enhancements. Moreover, hybrid models combining ABM, DES, and microsimulation offer a

comprehensive view by integrating various modeling strengths (Gallo et al., 2011; Gu et al.,

2021). Recent trends include optimizing simulation models with algorithms for parking allo-

cation and integrating real-time data with machine learning to adapt simulations to dynamic

conditions. Parking allocation refers to determining the optimal location, distribution, and pric-

ing of parking spaces within a city. This includes algorithms and strategies to identify the best

locations for new parking facilities, optimize existing spaces, and develop [dynamic] pricing to

balance supply and demand across urban areas. (Jha et al., 2023).

With the widespread availability of GPS technology, researchers gained access to datasets that

drastically transformed the study of parking behavior. GPS data enabled the analysis of actual

parking search patterns and durations, leading to more accurate and representative models.

Montini et al. (2012) is among the first studies that used floating car data (FCD) to estimate the

prolongation of travel time (the so-called cruising ”excess” time (Young et al., 1991; Weinberger

et al., 2020; Geva et al., 2022; Milia et al., 2023)) caused by parking search. Subsequently,

numerous studies have leveraged GPS data to analyze driver trajectories, thereby identifying

real-world patterns and elucidating the challenges associated with urban parking searches (van

der Waerden et al., 2015; Hampshire et al., 2016; Mannini et al., 2017; Weinberger et al., 2020;

Millard-Ball et al., 2020; Dalla Chiara & Goodchild, 2020; Mantouka et al., 2021; Milia et al.,

2023). This advancement in data utilization has significantly enhanced the understanding of

parking patterns in congested urban environments and is also the basis of this PhD thesis.

The latest advancements in the evolution of parking search behavior models leverage advanced

machine learning and predictive analytics. These models utilize extensive datasets—such as

GPS, sensor, geospatial, and land use data—combined with sophisticated algorithms to predict

parking occupancy and behaviors, and to enhance parking management systems. The deploy-

ment of machine learning models has improved the prediction of parking availability (Bock et al.,

2017; Yang et al., 2019; Saharan et al., 2020) and search times (Jones et al., 2017; Mantouka

et al., 2021; Bisante et al., 2023). This progressive approach is likely to reshape how urban

parking is managed and optimized in real time.

1.3 Thematic Context and Research Questions

1.3.1 Overall Research Question

Understanding parking search behavior requires accurate quantification, which in turn relies on

robust methodological foundations. Existing approaches to measuring parking search duration

range from simple surveys to complex models, each with its limitations. Surveys, for example,
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could gather data explicitly on parking search durations by targeting a specific time, area or

demographic group (Lee et al., 2017; Qin et al., 2020; Assemi et al., 2020). However, they

often suffer from limitations like sample size constraints and biases related to the memory of the

respondents. Field experiments provide greater accuracy by tracking real-time data, but they,

too, are limited by the researchers’ assumptions about when and where parking searches start

(Belloche, 2015; Alemi et al., 2018; Zhu et al., 2020).

Various studies have employed different modeling approaches to quantify parking search dura-

tion. A sound approach must capture not only the duration but also the precise starting and

ending points of the search. This task is challenging because the ”starting point” of parking

search is usually not observed by the researchers. Hence, several assumptions are common: In

some studies, the parking search start point has been ambiguously defined, ranging from the

driver’s initial departure to their arrival at the destination, depending on assumptions used.

For example, some researchers (e.g., Thompson and Richardson (1998)) suggest that the search

begins with the driver’s strategic decision at journey onset, whereas others (e.g., Brooke et al.

(2014)) propose that it starts only upon reaching the destination. Additional studies assume

a specific distance radius around the destination to approximate the start (Weinberger et al.,

2020; Montini et al., 2012), or use other heuristics such as speed changes to identify the initiation

of parking search (van der Waerden et al., 2015). Such discrepancies highlight the need for a

consistent framework for measuring parking search from a clear, empirical standpoint.

Different studies estimate search duration through various proxy variables and assumptions.

Although simulations offer a controlled environment to explore parking dynamics, they often

rely on generalized assumptions that may not reflect real-world conditions (Waraich & Axhausen,

2012; Gallo et al., 2011; Horni et al., 2013; Fulman & Benenson, 2018). Similarly, analytical

models attempt to estimate search duration based on variables that often require assumptions

about driver behavior and environmental context, such as parking occupancy (Inci et al., 2017;

van Ommeren et al., 2021).

Recent advancements in GPS technology have paved the way for more precise and representa-

tive studies on parking patterns. By leveraging GPS data, researchers can track actual vehicle

movements and derive insights into parking search behavior at a larger scale. However, using

raw GPS data in this context also presents challenges, including high computational demands,

potential privacy concerns, and, most importantly, missing some crucial information about park-

ing search behavior: the start and end of the parking search as well as the final destination of

the trip (Montini et al., 2012; van der Waerden et al., 2015; Weinberger et al., 2020; Mantouka

et al., 2021; Milia et al., 2023). Nevertheless, GPS data offers a valuable tool for capturing

the real-world complexity of parking search behavior (and route choice behavior in general),

something that traditional survey and experimental methods often lack.

A notable issue is the variation in mean parking search durations in previous studies. For

example, survey-based studies frequently report much longer search durations than those based

on GPS data. This discrepancy may arise from methodological biases, such as surveys capturing
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data primarily during peak times or in congested areas, thus skewing the results. Although all the

mentioned methods contribute valuable insights, each has its inherent limitations that can affect

the accuracy and generalizability of findings. In addition, models often struggle with defining the

critical start and end points of a parking search—a fundamental issue, as inconsistent definitions

lead to varying and sometimes incompatible results. Without clearly defining these points, any

attempt to measure parking search duration risks producing results that lack reliability and

comparability across studies.

Table 1.1 provides a comparative summary of the primary methodologies used in parking search

research, highlighting the advantages, limitations, and key studies associated with each ap-

proach. This overview complements the discussion by systematically outlining the strengths

and weaknesses of surveys, field experiments, GPS data analysis, analytical models, and sim-

ulations. The table also emphasizes the common limitation across all methodologies regarding

the ambiguous or heuristic definition of search starting points, underscoring the need for a more

precise framework to enhance accuracy and consistency in parking search studies.

Research Gap: Many existing studies on parking search rely on survey data (van Ommeren

et al., 2012; Lee et al., 2017; Assemi et al., 2020; Qin et al., 2020; Brooke et al., 2018), which

is subject to inaccuracies due to subjective biases. Factors such as memory lapses, rounding

errors, and response biases can significantly distort survey findings, particularly when it comes

to quantifying parking search duration. Field experiments (Alemi et al., 2018; Zhou et al., 2004),

though more controlled, require substantial logistical effort and rely on arbitrary assumptions

that may not capture the diverse range of real-world behaviors. GPS-based estimations of

cruising durations often determine only cruising excess time rather than the actual search route

and duration (Montini et al., 2012; Mannini et al., 2017; Weinberger et al., 2020; Dalla Chiara &

Goodchild, 2020; Dalla Chiara et al., 2021, 2022). Even attempts to trace the search trajectory

using GPS data may be flawed due to arbitrary assumptions, like defining a fixed radius around

the parking spot (Bisante et al., 2023; van der Waerden et al., 2015; Milia et al., 2023; Mantouka

et al., 2021). Analytical models (Inci et al., 2017; van Ommeren et al., 2021) and simulations

(Waraich & Axhausen, 2012; Gallo et al., 2011; Horni et al., 2013; Fulman & Benenson, 2018)

suffer from similar limitations, as they often rely on assumed variables rather than ground truth

data. Across these approaches, the overall research gap is a lack of a methodology that clearly

defines search starting and ending points and measures and collects the search duration and

route without heuristic assumptions.

Research Question: How can parking search behaviors be measured and analyzed empirically

to accurately capture and explore search durations, search starting points, and search routes?

Research Objective: The overall objective is to develop an empirical approach to recording

the start and end of parking searches without any heuristic assumptions (or realistically with

minimum possible assumptions). By minimizing reliance on assumptions, the methodology

utilizes GPS technology to capture real-world parking search behaviors across entire journeys,

from driving to parking and the final walking segment to the destination. By capturing the full

19



Table 1.1: Comparison of Methodologies in Parking Search Quantification Research

Methodology Advantages Limitations Studies

Surveys Easy to administer and can

target specific times, areas, or

demographics

Subject to memory bias,

response bias, and limited

accuracy due to self-reporting

Assemi et al., 2020,

Qin et al., 2020, Cao

et al., 2019, Brooke

et al., 2018, Cookson

and Pishue, 2017,

Lee et al., 2017,

Belloche, 2015,

Holgúın-Veras et al.,

2016

Field

Experiments

High accuracy with real-time,

observed data

Logistically complex, often

limited in scope and sample

size, and assumptions about

search start points

Zhu et al., 2020,

Alemi et al., 2018

GPS Data

Analysis

Provides high precision,

real-world context, and

large-scale data

High computational demand,

privacy concerns, and limited

in defining start and end

points of search

Milia et al., 2023,

Dalla Chiara et al.,

2021, Weinberger

et al., 2020, Dalla

Chiara and

Goodchild, 2020,

Mannini et al., 2017,

Mantouka et al.,

2021, Hampshire

et al., 2016, van der

Waerden et al., 2015

Analytical

Models

Can simplify complex

phenomena into quantifiable

elements

Often rely on assumptions

about driver behavior and

parking availability that may

not reflect real-world

conditions

van Ommeren et al.,

2021, Fulman and

Benenson, 2021, Inci

et al., 2017

Simulations Allows for controlled testing

of various scenarios and can

model hypothetical conditions,

great tool for assessing policies

Results depend heavily on

assumptions, may lack

real-world validity, and

typically require significant

computational resources

Fulman et al., 2020,

Cao et al., 2019,

Fulman and

Benenson, 2021,

Waraich and

Axhausen, 2012,

Horni et al., 2013

General Limitation: In all methodologies, the exact starting point of the parking search is often

unknown or defined heuristically.
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trajectory of parking searches, this method offers a level of precision that previous approaches

have lacked. Ultimately, this approach provides a holistic view of parking search processes and

enables a more detailed exploration of parking search behavior. In addition, this framework

lays the groundwork for deeper inquiries into parking search behaviors, allowing for further

research questions and a better understanding of the factors at play. For example, it could

provide insights into factors like the determinants of the search duration and the search starting

points. This comprehensive data collection also contributes to practical applications in urban

planning and policy-making. For instance, cities could use this information to optimize parking

allocation, implement dynamic pricing strategies, and reduce the negative impacts of cruising

for parking on urban congestion and emissions.

1.3.2 Specific Research Questions

Paper I: Initiation of Parking Search

Research Gap: Previous studies have not sufficiently analyzed the initiation point of the

parking search, a critical aspect that could potentially span from the start of the journey to

reaching the destination. This initiation point has only been briefly discussed in theoretical

terms (Thompson & Richardson, 1998; Horni et al., 2013; Millard-Ball et al., 2020), but lacks

data collection and empirical analysis.

Research Question: What factors (e.g., location, time, and distance to the final destination)

influence drivers to start the parking search process?

Research Objective: The proposed data collection method makes it possible to investigate

the transition from normal driving to parking search empirically for the first time. By utilizing

a logistic regression based on a simple microeconomic model of a rational driver minimizing

travel duration, the factors that influence the initiation of the parking search can be examined

to understand what affects drivers’ decision to start searching for a parking spot sooner or later.

Paper II: Determinants of Parking Search Duration

Research Gap: The overall research gap described above results in empirical studies aiming at

identifying the determinants of parking search duration being unreliable. Consequently, models

based on such data fail to accurately explain the factors influencing parking search. Furthermore,

statistical models that better fit the nature of the data, like survival analysis, could potentially

offer better insights than simple regression models (Mantouka et al., 2021; Zhu et al., 2020;

Fulman et al., 2020).

Research Question: What are the determinants of the parking search duration, and what are

their quantitative effects?

Research Objective: Utilize parking search data collected by the proposed data collection ap-

proach to model the duration of cruising for parking. The survival model, known from statistical
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and econometric analyses, should identify factors influencing parking search duration, including

time-varying factors changing during the search. This enables, for example, to estimate the

search-duration-dependency of the probability of finding a parking spot. The estimated param-

eters and derived conclusions are vital for policymakers, enabling them to investigate drivers’

parking behavior under different circumstances and develop measures to address cruising for

parking.

Paper III: Identifying Parking Search in GPS data

Research Gap: Previous models for identifying parking search in GPS traces have primarily

relied on heuristic approaches, such as threshold methods (radius around the parking spot)

(Montini et al., 2012; Mannini et al., 2017; Weinberger et al., 2020; Dalla Chiara & Goodchild,

2020; Dalla Chiara et al., 2021, 2022; van der Waerden et al., 2015; Milia et al., 2023; Bisante

et al., 2023; Mantouka et al., 2021). These models are based on arbitrary assumptions such as

a radius of 200, 400 or 800 m.

Research Question: To what extent can machine learning classify GPS points of trajectories

in ”parking search” and ”normal driving”? Is a prediction model suitable for exploring cruising

for parking in historical GPS data?

Research Objective: Develop and validate a machine learning model specifically designed

to identify parking search in unlabeled GPS data using ground truth data on parking search

behaviors. Test the model’s performance against existing heuristic rules and external validation

data, ensuring reliability and accuracy. Apply the model to a large-scale historical GPS dataset

to derive aggregated statistics for a city as a case study, showcasing its capability to provide

insightful urban mobility analytics and its adaptability across different urban contexts.

Figure 1.2 illustrates the overall conception of the research and the specific contributions of

each paper within the parking search process. The top bar represents the sequential stages of

the journey—Normal Driving, Searching, and Walking—emphasizing the research’s overarching

goal to adequately conceptualize, model, measure, and collect data across these phases. This

comprehensive approach forms the foundation of the overall research framework.

The bottom bar maps out the specific contributions of each research paper, showing how each

paper integrates into the broader framework while focusing on distinct aspects of parking search

behavior. Paper 1 explores the transition from Normal Driving to Searching, identifying the

factors that influence when drivers begin to search for parking. Paper 2 delves into the determi-

nants of cruising time within the Searching phase, examining variables that affect the duration

of the search. Paper 3 focuses on predicting cruising time, adding a layer of predictive modeling

to understand how long drivers might search based on various conditions.

This layered structure not only highlights the relation of the papers but also demonstrates how

each study complements the others by addressing different facets of parking search behavior.

Together, they should form a cohesive whole that advances the overall research conception,
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Figure 1.2: Overall Research Conception and Contributions of Research Papers Illustrating the

Relationship Between Individual Papers and the Overall Research Framework

enabling a comprehensive understanding of parking search dynamics and facilitating a thorough

exploration of this complex process.

The flowchart in Figure 1.3 summarizes the primary objective of this research in another way: to

develop a comprehensive empirical framework for understanding parking search behavior. This

overarching framework enables a detailed exploration of three key aspects, each represented by

one of the research papers.

1.4 Overall Conception and Methodology

1.4.1 Overall Methodology: Data Collection Framework

Development of an app:

To address the overall research question, a new approach is proposed to collect cruising data

using a mobile app, called Start2park (“Start2Park Research Project”, 2024).

The app operates through volunteer drivers who activate it at the start of their car journey.

What sets this app apart is its feature that allows drivers to manually log the initiation of

the parking search while driving, mark the end of the parking search upon finding a parking

spot, and finally end the recording once they reach their final destination on foot. This method

segments the journey into three distinct parts: driving until the search begins, the parking

search, and walking to the final destination.
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Figure 1.3: Flowchart of Research Objectives for Parking Search Behavior

The Figure 1.4 illustrates the data collection methodology employed through the Start2park

app, which is designed to segment a journey into three phases—Normal Driving, Searching, and

Walking—allowing for precise tracking of parking search behaviors. On the left, screenshots

from the Start2park app showcase the interface that volunteers use to manually log each phase

of their journey. Drivers activate the app at the start of their trip and subsequently mark

the beginning and end of the parking search, concluding the journey upon reaching their final

destination. This results in the journey segmentation timeline, depicted in the top part of the

Figure. These phases are marked by time stamps, providing an organized overview of each stage

in the journey. To the right, a sample recorded journey visualizes the driver’s path through

each phase of the process on the map. Each color-coded segment on the map corresponds to a

specific phase: blue for Normal Driving, red for Searching, and green for Walking. This allows

for deriving key statistics such as parking search duration and parking search length, as shown

in the bottom part of the Figure.

The mobile application developed for collecting parking search data aligns closely with the

methodologies outlined in the Steinmeyer et al. (2011) (EVE) document, which emphasizes

the importance of accurate and empirical data collection methods in traffic studies. The app

categorically fits into the ”measuring” methodology by recording precise, quantitative data

regarding parking search durations. This ensures adherence to EVE’s standards of minimizing

assumptions and biases in data collection, enhancing the reliability and validity of traffic data

pertinent to parking behaviors. By capturing exact times and GPS-coordinated locations from

the initiation to the conclusion of parking searches, the app results in objective and replicable
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data, thereby adhering to the EVE document’s emphasis on empirical validity.

Throughout this thesis, the data collected by this app is referred to as ”ground truth” data

regarding on-street parking searches. In the realm of data science and machine learning, ”ground

truth” refers to accurate, well-labeled data that serves as a benchmark for validating models and

conducting thorough analyses (Jordan & Mitchell, 2015; Stoyanov et al., 2018). This type of

data is considered reliable for training algorithms because it is assumed to be the most accurate

representation available of what is being measured. However, it’s crucial to recognize that the

term ”ground truth” does not imply that this data captures the absolute and complete reality

of parking search behavior. It merely indicates that within the scope of the data collection

methodology, the data is as accurate and precise as possible.

This notion of ”ground truth” signifies that the data is trustworthy within the limits and context

of the technology and methods employed. It’s essential for this research because it provides

a foundation for the empirical analyses and helps in the development of predictive models.

Nonetheless, while this data is invaluable, it’s also shaped by the specific interactions and inputs

from users—such as pressing a button at certain times—which introduces certain limitations and

biases. Therefore, when interpreting the findings and conclusions, it is important to consider

these inherent limitations and assumptions. The data is robust within its context, but like all

empirical data, it is subject to the constraints and conditions under which it was gathered.

Limitations of the app and its measurements:

Although the app introduces a new method for measuring parking search, the validity of its mea-

surements largely depends on user compliance and behavior. The following discussion explores

the challenges associated with the app and the potential biases these challenges may introduce.

• User dependency, delayed interactions, and forgotten interactions: The validity of the data

recorded by the app heavily relies on the driver’s consistent and timely interaction. Each

phase transition—starting the journey, beginning the parking search, marking the parking

spot, and signaling the arrival at the final destination—necessitates manual input from the

driver. This requirement introduces a variable quality of data collection, heavily dependent

on individual user behavior. Real-world scenarios often result in delayed interactions due

to distractions, the complexity of driving tasks, or simple forgetfulness, which can lead

to inaccurately recorded search durations and, ultimately, biased data. For instance, a

driver might begin a trip but forget to activate the parking search function in the app.

Upon exiting the parked vehicle and noticing the smartphone app, the driver might rapidly

start and then end the parking search, leading to a recorded parking search duration of

zero. Identifying and correcting such inaccurate records poses a significant challenge in

the data-cleaning process.

• Behavioral variability: Different drivers may have different levels of engagement and reli-

ability when interacting with the app. Some may be meticulous about pressing buttons

at the correct times, while others may be sporadic or generally inattentive to these tasks.

For example, a distracted driver starts looking for parking but only remembers to press
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Figure 1.4: Data Collection Framework Using the Start2park App for Recording and Segmenting

Entire Journeys and Analyzing Parking Search
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the ”Start Search” button one minute into their search and thinks this would still be

fine. This causes data collected to inaccurately portray a shorter parking search dura-

tion. The different behaviors may also be caused by a different understanding of the app.

For example, some drivers may end the parking search upon spotting a suitable vacant

parking spot, while others may end the search only after parking the vehicle. This vari-

ability can introduce a systematic bias where the data quality is correlated with the user’s

conscientiousness or familiarity with the app rather than solely reflecting parking search

behavior.

• Behavioral Modification: Using the app while looking for a parking spot could alter the

drivers’ behavior in different ways. For example, knowing they need to interact with the

app at certain points, drivers might start the parking search earlier than usual to ensure

they remember to press the ”Start Search” button, or they might choose parking spots

that they perceive as simpler options for ending the search phase cleanly (e.g., opting

for a parking lot rather than street parking to have a clear ”Vehicle Parked” moment).

Another factor to consider is the Hawthorne Effect, where individuals modify their be-

havior because they are aware they are being observed (Adair, 1984). This phenomenon

is particularly pertinent in this study as drivers know their actions are monitored and

recorded. For example, drivers may avoid illegal parking due to their awareness of being

observed. These behavioral changes present a substantial challenge in gathering genuine

data in research that involves active participant monitoring. The data collected in such

settings may not solely represent natural parking behaviors but also responses to being

observed, potentially leading to conclusions and recommendations that do not accurately

reflect real-world behaviors.

• Influence on Driving Safety: Efforts have been made to enhance the safety of the app

by designing the interface to be as user-friendly as possible. This includes featuring a

large, prominent button for ease of use and minimizing the need for interactions while

driving. The app requires only a single button press by the driver to initiate the parking

search phase, with all other inputs designed to be completed when the vehicle is station-

ary. Additionally, users are provided with safety instructions, recommending the use of

a smartphone holder to secure the device in a position that allows for safer interaction.

Despite these precautions, the necessity for any manual interaction with the app during

driving presents inherent safety risks. These risks are exacerbated under challenging driv-

ing conditions, such as in heavy traffic or adverse weather. The act of interacting with the

app—even with a single button press—could potentially divert the driver’s attention away

from the road. This distraction may lead to unsafe driving behaviors, including removing

hands from the steering wheel or eyes from the road, thereby increasing the likelihood of

accidents. This, on the other hand, may affect data quality: Drivers in challenging driving

conditions may use the app in another way than under ”normal” driving conditions. This

behavior may systematically bias the results, especially if driving conditions are correlated

with parking search durations.

Data Collection Assumptions:
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The data collection is based on several explicit and implicit assumptions, which are discussed

below.

By construction, the app segments the journey into distinct phases (”normal” driving, searching,

walking). Thereby, the initiation of the search is treated as a discrete ”one-way” event. This

methodology significantly simplifies a complex and dynamic behavior into a binary condition,

where drivers are categorized as either searching for parking or driving ”normally”. Once a

search starts, it is by construction of the app not possible to switch back to normal driving.

This assumption—that once starting the search, drivers do not return to ”normal” driving—fails

to account for drivers cycling between searching and normal driving in response to real-time

decisions influenced by traffic, time constraints, or changing priorities during the journey. Such

oversimplifications do not fully capture the dynamic aspects, complexities, and nuances of actual

parking search behaviors.

In reality, the initiation of a parking search is rarely a clear-cut and binary event. Drivers might

start scanning for spots opportunistically as they approach their destination, but not engage in a

focused search immediately. For example, a driver might start looking for parking spots casually

while they are still mainly focused on getting to their destination. This early phase can’t be

completely marked as “searching” or “not searching” and the exact transition is unclear. This

behavior resembles a quick check for parking with some willingness to park if they see a good

spot. Therefore, this initial phase blurs the lines between general navigation and the active

search for parking, challenging the notion of marking a specific “start” point for parking search.

Furthermore, drivers might switch from parking search mode back to normal driving. For

instance, this can happen if they realize they have driven too far from their destination, exceeding

their preferred walking distance. In response, they would temporarily pause their search, move

closer to the destination, and resume the search from a more suitable location. Urban driving

conditions can also make this pattern more complex. For example, when drivers find themselves

on streets where parking is prohibited or unavailable, they must pause their parking search and

focus solely on driving through these areas. Once they return to a location where parking is

feasible, they can continue their search. This intermittent searching behavior challenges the

concept of a clear distinct parking search from the starting point until the vehicle is parked.

If parking search cannot be captured by a binary variable, a more sophisticated approach would

collect and model parking search as a continuous variable, reflecting the dynamic and evolving

nature of driver behavior. This approach would recognize the gradations in search intensity,

influenced by dynamic factors such as the proximity to the destination, the density of parked

cars, or the legality of parking in certain areas.

In Paper III (Saki & Hagen, 2024b), a deep learning model is developed to identify parking

searches in vehicle GPS traces. This model generates a probability value for each GPS (obser-

vation) point, indicating its likelihood of being a parking search point or a ”normal” driving

point. This probabilistic approach provides a more nuanced view of the parking search behavior,

allowing for fluctuations in search probability throughout the journey. However, it is important
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(a) (b)

Figure 1.5: (a) shows GPS tracking data labeled as ”searching for parking” or ”not searching”

(b) depicts the outcomes of the binary classification model

to recognize that this model is limited by its training on a binary variable collected using the

existing methodology.

Figure 1.5a illustrates a journey recorded by the app, showing the actual data labels. This

highlights the distinctive data collection methodology. Figure 1.5b demonstrates the results of

the binary prediction model proposed in Saki and Hagen (2024b).

Figure 1.6 further explores this by showing the predicted probabilities of being in a state of

parking search at various GPS points along a driver’s route according to the model in Paper III.

Factors such as lower driving speeds and shorter remaining distances to the destination typically

increase these probabilities. This figure illustrates the complex interplay between speed, location,

and parking search behavior.

In conclusion, parking search was recorded as a binary variable (normal driving versus searching)

and also the final result of the prediction model is a binary variable. However, the examination

of the predicted (continuous) probabilities of the model provides an impression of the continuous

character of parking search decisions, which cannot be deepened within the scope of this thesis.

Data Cleaning:

The data cleaning process is a critical component of this study, serving as the foundation for

all subsequent analyses and model-building efforts. Starting with the extraction of raw data

from the app’s database, meticulous preprocessing steps were undertaken to ensure the data’s

accuracy and relevance, preparing it for analytical tasks. Below are some of the key steps and

strategies employed in the data cleaning process, including the systematic identification and

removal of errors.

• Completeness of Journeys: Only journeys that are fully recorded are considered valid.
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Figure 1.6: Probability of parking search at various points along a route, illustrating how factors

like speed and proximity to destination influence parking search behavior.
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Any journey that is not complete, perhaps because a user aborted the process midway,

is marked incomplete and removed from the dataset. This step ensures that all analyzed

data represent full user interactions with the app.

• Removal of Test Data: Some users, often to test the functionality of the app, rapidly click

through the record buttons, resulting in unrealistically short journey durations of just a

few seconds. These records are easily identified by their short duration and are excluded

from the dataset as they do not represent genuine user behavior.

• Exclusion Based on Anomalous Usage: Some users are observed with usage patterns that

did not align with the intended purpose of the app. For instance, one user logged over a

hundred trips where the durations for parking search and walking were consistently zero,

indicating incorrect use. These data points were excluded as they likely represent misuse

or misunderstanding of the app’s functionality.

• Thresholds Used for Data Cleaning: To ensure the integrity and reliability of the ground

truth dataset, specific exclusion criteria are set based on these ratios and additional pa-

rameters. Any journeys lasting less than three minutes in journey duration or exceeding

thirty minutes in parking search duration were removed, as these were considered either

too brief to be meaningful or unrealistically long. In addition, records with a total journey

distance less than 500 m are excluded, which indicated an insufficiently substantial journey

for analysis, or where the parking-destination clearance distance exceeded 1000 m, which

could skew the overall data with unusually long distances.

• Complete Journeys Marked as Searching or Walking: Occasionally, users inadvertently

press the record button multiple times at the beginning of their journey before starting to

drive. This results in the entire journey being incorrectly labeled as either parking search

or walking in the dataset. To address this issue, ratio of time spent searching or walking

to the total journey time is analyzed. Specifically, if more than 80 percent of a journey

was categorized as searching or walking, this is identified as a likely error due to multiple

button presses at the start. Such journeys were considered unreliable for the analysis

and were therefore removed from the dataset to maintain the accuracy and quality of the

training data.

• Driver forgetfulness: This is a notable challenge in accurately capturing data on parking

search behaviors. It’s common for users to start recording a journey with the app and then

forget its operation during the normal driving phase. They may only remember the app

upon reaching their destination, leading to erroneous records. Some users might simply

close the app, resulting in an easily detectable incomplete journey. However, others may

end the recording by quickly clicking through the app buttons, typically resulting in long

driving durations and zero durations for search and walking.

Similar issues may arise during the parking search and walking phases. For instance,

forgetting to log during the parking search results in an extended parking search du-

ration paired with zero walking duration. Alternatively, forgetting during the walking

phase might record accurate driving and searching routes, but an incorrect walking path.

To identify such instances, average speeds are calculated for each phase by dividing the
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Figure 1.7: A case where a user forgot to log the driving phase, remaining stationary within 100

m of the destination for about 27 minutes.

undertaken and origin-destination (OD) distances by its duration, allowing us to detect

anomalies. Additionally, It is assessed how long a user remains within a proximity of the

destination, which could indicate forgetfulness. An illustrative case is shown in Figure 1.7,

where it’s evident that the user forgot to use the app during the driving phase, remaining

within 100 m of the destination for approximately 27 minutes.

More complex scenarios include occasions where drivers start a journey but forget to log

the beginning of their parking search, only remembering to do so at the moment they

park. This results in a reported zero parking search duration, though the driving and

walking phases appear normal. Detecting such omissions is challenging, but in these cases,

the parking prediction model (Saki & Hagen, 2024b) is used as a tool. By comparing the

parking search durations predicted by the model with those actually recorded, significant

discrepancies can be identified.

In cases where a notable difference was observed, a manual and visual review of the trips

is conducted. Particularly, by examining the driving trajectories towards the end of a

trip, especially complex patterns around the destination area, it often became clear that

a driver had forgotten to log the search phase. Such instances where the parking search

was evidently undertaken but not recorded were removed from the dataset to ensure the

integrity of the analysis.

Figure 1.8 provides an illustrative example of this issue. Figure 1.8a displays a trip where no
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parking search was logged (showing zero duration), whereas Figure 1.8b presents the results

from the parking search prediction model, which suggests that a search likely occurred. This

contrast helps to highlight trips where logging errors due to forgetfulness might have skewed the

original data.

(a) Actual Observations (b) Predictions

Figure 1.8: (a) A sample journey where no parking search was logged, displaying a zero search

duration but a positive walking duration. (b) Results from the parking search prediction model,

suggesting that a parking search likely occurred, revealing potential discrepancies due to forget-

fulness in logging.

1.4.2 Specific Methodologies

Paper I: Initiation of Parking Search

The methodology employed in this study focuses on understanding the factors influencing the

initiation of parking search by utilizing a multinomial logit model. This approach was chosen

to capture the decision-making process involved in transitioning from normal driving to actively

searching for parking, and in some cases, parking immediately without searching. The primary

motivation behind this methodology is the need for an empirical model that can realistically

simulate driver decisions based on observable factors such as proximity to the destination and
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traffic conditions. The multinomial logit model is a widely used tool for analyzing decision-

making processes in transportation studies, due to its flexibility in modeling choices among

discrete alternatives (Cirillo & Xu, 2011).

This approach aligns with Random Utility Theory (Manski, 1977; Cascetta & Cascetta, 2009),

which provides a structured framework for modeling decision-making under uncertainty. It posits

that drivers seek to minimize the total costs (which is equivalent to maximizing utility) associated

with their journey, with costs being influenced by variables related to driving, searching, and

walking. By framing parking search initiation as a utility maximization problem, this study

leverages established economic principles, typically applied in microeconomic models of decision-

making, to examine how drivers weigh the trade-offs between continuing to drive and initiating

a search for parking.

A guiding research hypothesis is that the likelihood of initiating a parking search increases

as drivers approach their destination. This hypothesis is grounded in both theoretical and

empirical literature, suggesting that factors like traffic congestion, parking availability, and driver

characteristics significantly impact the timing of search initiation (Shoup, 2005; van Ommeren

et al., 2021; Zakharenko, 2016). Variables such as proximity to the destination, familiarity with

the area, and driver demographics are expected to play key roles in this process.

This study contributes to the literature on parking behavior by addressing a gap left by earlier

models, which often relied on static assumptions about when a search begins. As highlighted by

Millard-Ball et al., 2020, the uncertain nature of the parking search starting point complicates

the analysis of cruising behavior. Horni et al., 2013 similarly state that the origin of the parking

search ”cannot be specified sharply”. Different scholars have proposed varied conceptualizations

of this starting point. For instance, Thompson and Richardson, 1998 suggest it begins with the

driver’s decision on a parking strategy, while Brooke et al., 2014 assume it starts upon reaching

the destination. Other studies, such as those by Weinberger et al., 2020, Montini et al., 2012,

and Kaplan and Bekhor, 2011, have used distance-based thresholds ranging from 100 to 400 m.

Unlike previous models, this approach leverages real-world behavior recorded through the

start2park-app described in Section 1.4.1. By using ground truth data on parking search initia-

tion within a multinomial logit framework, this study offers a dynamic and data-driven perspec-

tive on parking search behavior. This methodology places the study within an emerging field of

research that combines smart data collection, big data, and econometric techniques to enhance

the understanding of parking dynamics.

Paper II: Determinants of Parking Search Duration

This study employs survival analysis (Jenkins, 2005; Clark et al., 2003) with a competing-risks

model (Austin et al., 2016; Satagopan et al., 2004) to investigate the determinants of parking

search duration. This approach was selected to capture the time-dependent nature of parking

search behavior and to address multiple possible outcomes—such as finding Free, Paid, or Illegal

parking. By enabling a simultaneous examination of these interrelated events, this methodology
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provides a comprehensive view of how various factors influence not only the duration of the

search but also the type of parking ultimately chosen.

The analysis is grounded in utility maximization (Aleskerov et al., 2007), which propose that

drivers make parking decisions based on a trade-off between costs (such as time, walking dis-

tance, and parking fees) and benefits (such as convenience and perceived safety) (Axhausen &

Polak, 1991). The central hypothesis of this study is that the likelihood of a driver selecting a

particular parking type, given the duration of the current parking search episode so far, depends

on contextual factors, including the time of day, proximity to the destination, and prior parking

experiences (Hilvert et al., 2012; Kobus et al., 2013; Hess & Polak, 2004; Ibeas et al., 2014; Qin

et al., 2017; Soto et al., 2018). It is expected that as search duration increases, drivers may

adjust their preferences, potentially becoming more inclined toward Paid or even Illegal parking

options due to factors such as frustration or urgency. The model’s time-varying baseline hazard

function allows for exploration of this aspect, capturing changes in driver behavior as search

duration extends, called ”duration dependence of the hazard rate”.

This methodology distinguishes itself from previous studies on two fronts. First, it utilizes again

high-resolution GPS data to capture real-time parking search behavior, contrasting with research

that largely depended on survey data (van Ommeren et al., 2012; Lee et al., 2017; Assemi et al.,

2020; Qin et al., 2020; Brooke et al., 2018), field experiments (Alemi et al., 2018; Zhou et al.,

2004) or unlabaled GPS data (van der Waerden et al., 2015; Dalla Chiara & Goodchild, 2020;

Mantouka et al., 2021).

Second, this study applies advanced modeling techniques that better address the complexities of

parking search behavior. Earlier models, such as the one by Dalla Chiara and Goodchild, 2020,

calculated cruising excess time from GPS data without a well-defined starting point for parking

search and used Ordinary Least Squares (OLS) linear regression to quantify the determinants.

While some recent studies have employed survival analysis for parking search duration modeling

(Zhu et al., 2020; Fulman et al., 2020; Mantouka et al., 2021), they generally fail to differentiate

among parking types or account for the dynamic nature of driver preferences during the search.

In contrast, the competing-risks survival analysis with a time-varying baseline hazard model

used here is particularly suited to the hypothesis, as it allows for simultaneous analysis of

multiple outcomes while accounting for the duration-dependent nature of decision-making. This

advanced approach offers a more precise estimation of factors affecting parking search duration

and provides insights into the decision-making process that are challenging to capture through

simpler models.

Paper III: Predictive Model to Identify Parking Search in GPS Data

The ground truth data collected by Start2park consists of sequential GPS points, each labeled

as ”normal driving,” ”parking search,” or ”walking.” To accurately classify each point, it is

essential to consider the sequential nature of the data, as well as the attributes of preceding

points. Various models are suited to this type of data, including multinomial logit models

(Kwak & Clayton-Matthews, 2002), feedforward neural networks (Bebis & Georgiopoulos, 1994),
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recurrent neural networks (RNNs) (Medsker, Jain, et al., 2001), and long short-term memory

(LSTM) networks (Yu et al., 2019). Given that the primary objective is to achieve the highest

possible prediction accuracy rather than to quantify the effect of specific attributes, machine

learning models emerged as more suitable than statistical / econometric models.

After comparing feedforward neural networks with RNNs and LSTMs, the simpler structure of

feedforward neural networks proved advantageous, as they demonstrated similar performance

while being easier to configure, train, and deploy in practical applications. Based on these

considerations, the final methodology employs a feedforward neural network architecture, which

balances predictive power with practical applicability.

The study hypothesizes that variables such as speed and distance to the destination, alongside

contextual factors like traffic conditions and journey characteristics, influence the search strategy

(Axhausen & Polak, 1991; Hilvert et al., 2012; Kobus et al., 2013; Hess & Polak, 2004; Ibeas

et al., 2014; Qin et al., 2017; Soto et al., 2018). These variables should provide sufficient

information to build a robust prediction model capable of identifying parking search segments

within a GPS trajectory, ideally surpassing the accuracy of existing models.

The final model focuses on speed and distance to the destination based on two main consid-

erations. First, a feature importance analysis revealed that these two variables are the most

critical, with speed serving as a proxy for various contextual factors influencing parking search

behavior (van der Waerden et al., 2015). Second, by restricting the model to speed and distance,

the model’s generalizability and transferability are significantly enhanced, as these two variables

are commonly found in most GPS datasets and can be easily calculated if not directly available.

This ensures that the model can be utilized with different datasets, making it accessible and

practical for broader applications. The generalizability and transferability of the model were

verified through testing on an independently labeled dataset, collected using a different app and

diverse driver profiles.

The increasing availability of GPS data has prompted numerous studies to analyze parking

search behavior through various methodologies. Many of these studies focus on estimating

cruising excess time without explicitly labeling parts of a journey as ”parking search” (Montini

et al., 2012; Mannini et al., 2017; Weinberger et al., 2020; Dalla Chiara & Goodchild, 2020;

Dalla Chiara et al., 2021, 2022). Among those that attempt to identify parking search segments,

heuristic-based methods have been common. These include the fixed radius method (Bisante

et al., 2023), where the search is assumed to begin within a certain distance of the destination;

the speed threshold method (van der Waerden et al., 2015; Milia et al., 2023), which uses a

reduction in speed within a defined radius; and the local minima approach (Mantouka et al.,

2021), where a parking search starts when the distance to the destination first increases after

decreasing within a set radius.

These heuristic approaches, while useful, are limited by their reliance on fixed assumptions.

The proposed ML model was rigorously tested against existing methodologies and demonstrated

superior performance in identifying parking search segments within GPS trajectories.
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The proposed ML model introduces a framework for detecting parking search behavior in unla-

beled historical GPS data, offering value for urban planners, policymakers, and researchers.
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Abstract

This study investigates the starting point of parking search, presenting new findings through

empirical and theoretical approaches. It introduces a probabilistic model that describes the

transition from normal driving to actively searching for parking, aiming to minimize journey

costs. The model is tested using real-world data collected via a smartphone app that tracks the

start of parking searches. Results validate the model, showing that drivers are more likely to

begin searching for parking earlier when parking spaces are scarce and driving speeds are reduced

(e.g., by congestion). Additionally, various factors influence the start of the parking search,

including driver age, vehicle class, and familiarity with the destination. Specific conditions such

as proximity to amenities, rush hour timing, and destination familiarity prompt earlier search

initiation. The study also identifies scenarios where drivers skip the search process and park

immediately, influenced by factors like driving home, short parking durations, and destination

familiarity.

Keywords: Cruising-for-parking; Parking search behavior; GPS data; Multinomial logit model

2.1 Introduction

Cruising for parking traffic incurs external costs in the form of emissions and congestion (Shoup,

2021). In addition, parking search is perceived as more negative than driving prior to the search

start (Weis et al., 2021). The existing empirical literature on parking search predominantly

relies on surveys asking people retrospective questions about the start of their search (location
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and time) as well as the duration and distance of the search (Lee et al., 2017; Assemi et al.,

2020; Qin et al., 2020). Some studies use occupancy data representing parking demand to draw

a conclusion on the parking situation (Zakharenko, 2016; Inci et al., 2017; van Ommeren et al.,

2021). In recent years, there has been a growing body of literature that utilizes Floating Car

(GPS) data (Mannini et al., 2017; Dalla Chiara & Goodchild, 2020; Mantouka et al., 2021),

which is subject to certain arbitrary assumptions regarding the initiation of the search process.

For instance, Weinberger et al. (2020) and Montini et al. (2012) define a radius of 400 and 800

m around the parking spot found and refer to travel within this radius as cruising.

However, to have the complete image of a car journey with the exact parking search route

and duration, we require more information. Four crucial aspects are deemed essential for a

comprehensive analysis of this phenomenon: Firstly, the origin of the trip. Secondly, the start of

the search process, which separates “normal driving” from “cruising”. Thirdly, the parking spot

found marking the end of the parking search process and the start of walking. Fourthly, the final

destination, which is reached after driving, cruising, and walking. While the first information –

the origin of the trip – and the third one – the parking spot found – can be derived (more or

less accurately) from almost any floating car (GPS) data, the second and the fourth information

remain elusive in previous research.

As will be summarized in section 2, there are many studies that concentrate on route choices and

parking choices during the search process. They all assume that the search starts somewhere

along the way to the destination. Nonetheless, no empirical study has yet investigated what

factors influence the driver’s choice to start the search at a certain point. The reason is that

the exact time and location of this point have been unknown to researchers. Based on a unique

dataset containing the ground truth data on parking search, including all four aspects mentioned

above, this study aims to model the start of the search process through a statistical model based

on a simple theoretical model. The underlying data source of this paper encompasses information

on the start of the parking search (time and location) as well as the origin of the trip, the parking

spot found, and the final destination of the journey. This information is measured directly by

the drivers pressing a button of a smartphone app developed for the purpose of measuring

parking search. These four aspects split every journey into three parts: driving until the search

begins, parking search, and walking to the final destination. Furthermore, the app collects some

personal data of the drivers such as age, gender, vehicle type, and average yearly driven distance,

as well as a few journey-related questions about planned parking duration, familiarity with the

destination zone, purpose of the journey, and type of the found parking spot.

Our empirical analysis sheds light on the various factors that affect the start of parking search

as well as the absence of parking search. Regression results obtained from pooled, fixed effects,

and random effects multinomial logit models suggest that driver-related, journey-related, and

destination-related variables have a significant impact on the driver’s choice of starting the

parking search and skipping the search. For example, older drivers, female drivers, and drivers

of higher-class vehicles are found to initiate the search process later. Furthermore, familiarity

with the destination area, the presence of amenities such as restaurants and bars, and driving
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during rush hours make drivers start the search sooner. We can generally conclude – in line

with our theoretical model – as the difficulty of finding a vacant parking spot increases, drivers

tend to initiate the search process at an earlier stage. In addition, the analysis also reveals that,

in some instances, the parking search process is skipped entirely since a parking spot can be

found immediately. Factors such as driving toward home, having a planned parking duration

of less than 30 min, and being familiar with the destination area are found to be significant

contributors to this phenomenon.

The paper is structured as follows. In section 2, we provide a brief literature review on cruising

for parking, clarifying the search process and investigating behavioral search models. Section 3

expands on the conceptual framework of the paper and elaborates on our theoretical model by

building upon existing models. Section 4 contains the empirical methodology, which is used to

apply empirical evidence collected using the smartphone app. The data used for the statistical

model is presented in Section 5. Section 6 presents the results of the search starting point choice

model and starts a discussion to investigate the results. Finally, Section 7 summarizes the key

findings of the study and provides a conclusion that highlights the most significant results.

2.2 Literature review

A sound understanding of the parking search process is a prerequisite for modeling the parking

search starting point. Previous theoretical works in the field have provided definitions and

insights into the nature of the parking search problem. In one of the earliest studies, (Tamari,

1982) defines the walking distance from the parking spot to the destination as a loss. In this

case, the driver tends to minimize the expected loss. This perspective was later supported

by (Van Der Goot, 1982), confirming that walking time has the greatest influence on drivers’

choices with regard to the parking location. Polak and Axhausen (1990) suggest that to fully

grasp the parking search process within the context of parking behavior, it is crucial to identify

the search strategies employed by drivers. For example, drivers may opt to drive straight to a

parking garage that guarantees vacant spots, thereby avoiding the search process completely.

(Thompson & Richardson, 1998) provide a definition within a behavioral modeling framework

for cases when the drivers do not have a reserved parking spot at the destination. The search is

defined as a series of decisions commencing at a specific point, where drivers decide to choose

a parking place (a street segment including a group of on-street parking spots or an off-street

parking facility) and examine it at each intersection until they find a vacant spot and accept it.

Empirical parking choice models (Hunt & Teply, 1993; Hilvert et al., 2012; Kobus et al., 2013;

Ibeas et al., 2014; Soto et al., 2018) focus on the effects of various parking measures, such as

alterations in supply and parking fees, on driver behavior, in particular, on parking facility (and

sometimes combined with travel mode) choice. One of the main questions is: given some at-

tributes, such as parking cost, egress time, parking duration, parking security, and driving space,

will the driver choose a specific parking facility or not? van der Waerden (2012) summarizes

the features in which parking choice models differ: the number and type of alternatives (e.g.,
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free on-street, paid on-street, off-street, illegal parking), the number and type of characteristics

(e.g., parking fee, egress time, access time, search time, parking duration), the field of applica-

tion (e.g., shopping trips, leisure trips), the type of data (e.g., revealed preferences and stated

preferences), the modeling approach (e.g., multinomial logit, nested logit, mixed logit), and the

findings.

Theoretical parking search models (Glazer & Niskanen, 1992; Anderson & De Palma, 2004;

Dell’Orco & Teodorović, 2005; Arnott & Inci, 2006; Benenson et al., 2008; Arnott & Rowse,

2009; Krapivsky & Redner, 2019; Fulman & Benenson, 2021) center around search duration and

aim to explain parking search behavior based on the time-varying attributes and information

gathered during the search effort. A general conclusion based on these theories is that parking

search is a continuous decision-making process. The first decision to make is to start the parking

search. The driver faces this decision theoretically from the start of the journey until she or he

arrives at the street being closest to the final destination. Intuitively, the probability of initiating

the search increases as the driver progresses closer to the final destination up to a certain point.

Once the search has begun, the driver could at any time point either continue to search, or

terminate the search and drive to a parking garage of choice, or park illegally. In some models,

the drivers do not have perfect information and they can learn about the system (the situation

on site).

In the realm of parking economics, Zakharenko (2016) provides a pivotal exploration of dynamic

parking pricing strategies and their impact on driver behaviors related to parking search. His

model illustrates that optimal pricing should dynamically adjust according to the real-time flow

of arriving parkers and the existing occupancy rates, a concept that departs from traditional

static pricing models. This theoretical framework supports the understanding that effective man-

agement of parking availability through pricing can significantly influence when drivers decide

to start their search for parking. The insights from Zakharenko (2016) study form theoretical

foundation for our research, particularly in analyzing how variations in parking space availabil-

ity and urban congestion (and consequently driving speed) impact the initiation point of the

parking search process.

Considering the evolving perspectives on parking search strategies, a compelling framework is

provided by the study conducted by van Ommeren et al. (2021), which integrates the dynamic

interplay between in-vehicle search and the consequential walking time, elaborating upon the

foundational insights initially discussed by Zakharenko (2016). While Zakharenko (2016) ele-

gantly underscores the pivotal role of driving speed and parking space density in determining the

cruising for parking, van Ommeren et al. (2021) expands on these ideas by incorporating both

linear and circling search strategies into the analysis. This nuanced approach not only refines

the theoretical model by acknowledging the often-overlooked component of pedestrian transit

from parked vehicles to final destinations but also quantifies the impact through a so-called

“walking multiplier” (Ψ), which varies with the ratio of driving to walking speeds. For instance,

van Ommeren et al. (2021) adaptation of the model shows that while a linear search strategy

might overestimate Ψ due to excessive walking time predicted by naive strategies, a circling
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strategy, where searching is confined within a single block radius, presents a more realistic and

empirically congruent scenario. These theoretical advancements are crucial as they recalibrate

our understanding of parking behavior under different urban layouts and demand conditions.

Therefore, a more holistic view of parking search strategies, such as those proposed by van

Ommeren et al. (2021), can significantly enhance the robustness and applicability of parking

economics models initially posited by Zakharenko (2016).

The extensive body of theoretical research on cruising for parking has highlighted the importance

of understanding the starting point of the parking search process. However, due to the limitations

in the datasets used, the starting point of the search has been left as a blind spot in the research.

Millard-Ball et al. (2020) states that the uncertain nature of the parking search starting point

makes characterizing cruising complex. Horni et al. (2013) even state that the origination

of parking search “cannot be specified sharply”. The origination of the parking search has

been variously conceptualized by scholars, with Thompson and Richardson (1998) viewing it

as starting from the beginning of the journey when the driver decides on a parking strategy,

while Brooke et al. (2014) assume that it begins when the driver reaches the final destination.

Meanwhile, other studies assume a certain radius around the parking spot or destination, such

as 100 m, 200 m, or 400 m, for starting the search (Weinberger et al., 2020; Montini et al.,

2012; Kaplan & Bekhor, 2011). Apart from distance-based methods, other studies proposed

alternative methodologies to identify the parking search starting point. van der Waerden et al.

(2015) suggest an arbitrary rule based on speed and its decrease rate to identify the search

in GPS data. In an attempt to determine this point, Hampshire et al. (2016) record videos

of drivers while completing journeys and analyzes their body movements. Finally, Kaplan and

Bekhor (2011) address this issue and indicate that pinpointing the start of parking search should

be the central concern in future studies. Overall, by building upon the existing parking models,

this work fills the gap by proposing a theoretical model for starting point of the parking search

and validating it through a unique dataset.

Through evolving transportation infrastructures, new technologies, and new mobility models,

the parking search definition could vary. For instance, autonomous vehicles may have entirely

different search strategies to minimize the total journey cost (Zhao et al., 2021; Ertekin & Önder

Efe, 2021). This work does not extend its analysis to the cruising behavior of autonomous

vehicles.

2.3 Theoretical model to explain the start of the search process

We propose a simple sequential model in discrete time, which could be called a “pre-search”

model since it is primarily concerned with the decision to start to search depending on various

variables such as the remaining distance to the destination and speed.

A rational agent aims to minimize the cost of a journey by finding an optimal search start.

To facilitate the analysis, the journey is divided into three distinct phases: ”normal driving”,
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”searching”, and ”walking.” The normal driving phase represents the journey prior to the initia-

tion of the parking search, the searching phase is from the initiation of the search until parking,

and the walking phase lasts from parking to the final destination (Fig. 2.1). The journey’s du-

ration is influenced by the speed of the agent, which is assumed to be constant throughout each

of these three phases. The speed of normal driving is denoted by vd, the speed while searching

is vs, and the walking speed is vw.

Figure 2.1: Division of the journey into three phases; normal driving, searching, and walking,

respectively, at vd, vs, and vw

According to this division, the total cost of the journey is the sum of cost of normal driving,

cost of searching and cost of walking,

TC = Cd + Cs + Cw

TC Total cost of the journey

Cd Cost of normal driving

Cs Cost of searching

Cw Cost of walking

The costs can be expressed as a function of durations.

Cd = γdTd

Cs = γsTs

Cw = γwTw

γd Weight (cost per unit of time) of normal driving

γs Weight of searching

γw Weight of walking

The total cost of journey can be formulated as:
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TC = γdTd + γsTs + γwTw

Building upon this, further aspects from the model proposed by van Ommeren et al. (2012) could

be incorporated. While our model has been primarily concerned with the pre-search phase of

the parking process, van Ommeren et al. (2012) focus on the search itself. Nevertheless, some

elements fit well into our model since the underpinning goal is similar: to understand the

influencing factors in a driver’s decision-making process in parking scenarios. Aspects such as

parking fees, the number of passengers, the influence of time on travel duration, and parking

duration, while typically associated with the search phase, could also be effectively adapted into

our model. The following paragraphs outline these extensions:

• Parking Cost: Our theoretical framework can be refined further by adding parking cost

(PC) to our total cost (TC) equation. PC, which is a function of the parking duration,

includes both monetized (e.g., parking fees, overstay fines, and towing fees) and non-

monetized cost of parking (e.g., safety, convenience, and weather exposure of the parking

spot). The modified equation would henceforth represent TC as the sum of cost of normal

driving, searching, walking, and parking cost. Therefore, TC = γdTd+γsTs+γwTw+PC.

• Number of Passengers: Building on the insight of van Ommeren et al. (2012) that the

number of passengers in a vehicle affects the cruising cost, we could extend our model

accordingly. As such, the cost functions for each phase of the journey (Cd, Cs, Cw) could

be made contingent upon the number of passengers in the vehicle (N). For instance, the

cost of searching can be redefined as Cs =
∑N

n=1 γs,nTs,n, thereby capturing the augmented

cost associated with multiple passengers undergoing the search phase.

• Value of time: van Ommeren et al. (2012) treat the value of time as a variable rather

than a constant and assume that it decreases with the progression of travel duration. To

align our model with this nuanced perspective, we could render the γ values for each phase

depending on the total travel time, excluding cruising.

The rational agent minimizes TC by finding the optimal search starting point. In other words,

starting the search means that the driver believes from this moment on, if a vacant parking spot is

found, parking the car and walking to the final destination leads to a lower total cost of journey

than driving further towards the final destination and starting the search later. Therefore,

during the journey (until the start of the search), the agent decides again and again if she or he

should start the search now or drive further and start the search later. Given this, the location

of the start of the search process indicates, together with the location of the destination, the

maximum acceptable walking cost (and distance). We can obtain this cost-minimizing location

by comparing the remaining cost of journey in cases which the search starts at current position

and the search starts later.

The theoretical analysis of this section provides the basis for the empirical analysis that follows.

Since some of the theoretical aspects mentioned cannot be empirically tested with our data, we
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make the following simplifying assumptions to ensure that our theoretical analysis is helpful for

the following empirical analysis. Firstly, the parking cost as defined above remains constant in

the destination area. This enables us to focus on driving, searching and walking costs within this

context for a certain journey. Secondly, the cost analysis is limited to the driver’s perspective,

implying that the passenger count is restricted to one (N = 1). Thirdly, we assume the value

of time to be constant throughout the journey. Finally, we assume that the total cost of the

journey is equal to the total duration of the journey, i.e., γd = γs = γw = 1, implying that the

agent aims to minimize the remaining journey duration.1 It follows that the remaining journey

cost is defined as the driving duration (including searching) plus the walking duration.

RC = T ∗
d + Ts + Tw

RC Remaining cost of the journey at a given point along

the journey

T ∗
d Remaining duration of normal driving

The remaining duration includes the driving duration from the current position to the location

of a parking spot (which may be null if a suitable parking spot is immediately found upon

initiation of the search) and the walking duration from the parking spot to the destination. The

agent is not fully informed about the availability of parking spots; thus, the estimation of the

remaining duration is based on the agent’s expectation of how difficult it is to find a parking

spot, which in turn is shaped by the known probability of finding a vacant parking spot along

the way towards the final destination.

Given a predefined road network, an agent wants to travel from a certain origin point to a

certain destination point. The shortest route to the destination is calculated, and it is split into

equal segments of length x. Each segment is defined as the route between two points, with the

points starting from 0 and incrementing up to infinity to reflect the theoretical possibility of an

indefinite search in the absence of a successful outcome. In the example shown in Figure 2.2,

the starting position is represented by point 0, while point 8 represents the closest parking spot

to the destination.

1In some studies, such as Shoup (2021), the weight assigned to walking duration is assumed to be 2 in the

overall calculation of cruising cost (γw = 2), as it takes into account the return from the destination to the parking

location. We have simplified this assumption by considering only a single walking duration in our computation

of journey cost.
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Figure 2.2: Schematic representation of the split route using generated points

At each point, the agent must decide whether to initiate the parking search or to continue

driving to the next point before starting the search. From the agent’s perspective, the lower the

probability of finding a vacant parking space, the sooner the search should start. The agent has

then to accept a longer walking path as a trade-off for a long search duration. The agent faces

the same decision problem until he or she reaches the final destination at which the search must

start (if it has not already) (Millard-Ball et al., 2020).

Let RCq
j be the remaining cost of the journey when the agent is located at point j and starts

the search at point q, where q ≥ j. In this notation, the subscript shows the position of the

agent, while the superscript denotes the search starting point. Let B denote the point at which

the parking spot is found and Z represent the destination location. When the agent initiates

the parking search at his or her current location j, the remaining normal driving duration T ∗
d

is zero and the remaining cost RCj
j is the sum of Ts, which is the cost (duration) of searching

from point j to the parking spot B, and Tw, which is the cost (duration) of walking from the

parking spot B to the destination Z.

RCj
j = Ts + Tw

If the agent finds a parking spot immediately after starting the search, i.e., B = j, the searching

duration Ts is zero, resulting in the remaining cost being solely the walking duration.

Since the costs are defined as durations, we can reformulate the cost function in terms of distance

and speed. RCj
j is the sum of the searching duration from point j to point B and the walking

duration from point B to point Z. Therefore, RCj
j can be rewritten as:
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RCj
j = Ts + Tw =

(B − j)x

vs
+

DB

vw

with x being the constant segment length, and DB indicating the remaining walking distance

from point B to the final destination.

We assume that the expected probability of finding a vacant parking spot in each point (or its

corresponding segment) is constant and equals to p, representing the agent’s expectation on how

likely it is to find a vacant parking spot in that journey in a segment, given his or her experience

and knowledge on the geographical area and the traffic condition. It is also assumed that an

unavailable parking spot will be unavailable forever (during the journey). If the agent starts the

search at point j, the probability of finding a vacant spot at point B ≥ j follows a geometric

distribution (Arnott & Williams, 2017):

f(j, B, p) = P (starting search@j, park@B) = (1− p)B−j · p for B ≥ j

RCj
j is a random variable with the expected value (expected cost of starting the search at point

j):

E(RCj
j ) =

∞∑
B=j

f(j, B, p) ·RCj
j

=

∞∑
B=j

(1− p)B−j · p ·
(
(B − j)x

vs
+

DB

vw

)

RCj+1
j is defined as the remaining cost of the journey when the agent is located at point j and

the search starts at point j +1 (next point). This cost is represented as the sum of T ∗
d , the cost

(duration) of driving to the search start point j + 1 (remaining normal driving duration), Ts,

the cost (duration) of searching from point j+1 until a parking spot is found at B, and Td, the

cost (duration) of walking from the parking spot B to the final destination Z. Thus, the cost

function can be expressed as follows:

RCj+1
j = T ∗

d + Ts + Tw =
x

vd
+

(B − j − 1)x

vs
+

DB

vw
for B > j

As RCj+1
j is also a random variable, we can estimate the cost of starting the search at the next

point (when the vehicle is currently located at point j) by calculating the expected value:

E(RCj+1
j ) =

∞∑
B=j+1

f(j + 1, B, p) ·RCj+1
j

=
∞∑

B=j+1

(1− p)B−j−1 · p ·
[
x

vd
+

(B − j − 1)x

vs
+

DB

vw

]

Therefore, at point j the following rules must hold:
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• if E(RCj
j ) < E(RCj+1

j ) then the agent starts to search.

• if E(RCj
j ) > E(RCj+1

j ) then the agent drives to the next point and repeats this decision-

making process.

Using this intuition, if we assume typical values for speed, we can show how changes in the

probability of finding a vacant parking spot affect the search starting point. Imagine a rational

agent is driving from an arbitrary origin point toward the destination. An example of this

hypothetical journey is visualized in Figure 2.3a. For better visualization, we visualize only

the last section of the journey, which is reasonably long enough to contain the parking search

starting point. The solid blue line in this figure represents the shortest path to the destination,

along which the parking search must start. The end of this route is the closest parking spot

to the destination, which is theoretically the last reasonable opportunity to start the search.

Afterward, we split the route into equal lengths using the generated points as shown in Figure

2.3b.2 These are the points (or steps) where the agent must make a decision on when to initiate

the parking search. In the next step, the costs, RCj
j and RCj+1

j , are calculated to find the

optimal search starting point. In this illustration, we assume a driving speed of 20 km/h, a

searching speed of 16 km/h and a walking speed of 4 km/h.

Figure 2.3: (a) agent’s route toward the destination (b) route split into equal segments (c)

optimal starting search points for different probabilities of finding a parking spot p

The remaining walking distance to the final destination DB can be calculated at each point.

Before reaching the destination, it is proportional to the number of remaining segments. After

2This is done as follows: (1.) The shortest path is calculated using Valhalla Open-Source Routing Engine (2.)

Line split is done using shapely, a python library for spatial analyses.
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reaching the destination, the distance undergoes periodic fluctuations, which reflect the circula-

tion around the block in search of an available parking spot. In addition, as the agent’s search

for a parking spot continues to be unsuccessful, the radius of the search area expands over

time, implying that the agent becomes increasingly willing to endure a longer walking distance

(Martens & Benenson, 2008). This is visualized in Figure 2.4.

Figure 2.4: The remaining distance to the destination visualized for the selected range of points

We can now calculate E(RCj
j ) and E(RCj+1

j ) for each generated point along this journey for

arbitrary values of p. An example at p = 0.04 is visualized in Figure 2.5. Initially, after the

start of the journey, E(RCj+1
j ) is lower than E(RCj

j ) since driving speed is higher than walking

speed, by assumption. However, as the agent approaches the destination, the difference between

the two costs decreases. At a certain point, E(RCj
j ) < E(RCj+1

j ), which triggers the start of

the search.

Figure 2.5: Expected costs at generated points for the example journey
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For different values of p, we can calculate E(RCj
j ) and E(RCj+1

j ) and, hence, the optimal search

starting point. Figure 2.3c presents these results, demonstrating that an increased probability of

finding a parking spot results in an optimal search starting point closer to the final destination.

Based on our simplistic theoretical model, several insightful conclusions can be drawn. The

main implications of the model are as follows:

• The model allows for an evaluation of the optimal search starting point in relation to the

value of p, which serves as a measure of the parking demand pressure given a certain supply.

When the probability of finding a parking spot decreases, the optimal starting search shifts

further away from the destination. In other words, when finding a parking spot is more

difficult, the driver tends to start the parking search sooner in order to minimize the total

journey duration. This supports the hypothesis formed by Millard-Ball et al. (2020) that

parking search starts sooner in areas with higher parking occupancy.

• The model enables an analysis of the effects of changes in driving speed, searching speed,

and walking speed on the optimal search starting point:

– A decrease in driving speed vd or searching speed vs moves the optimal search starting

point further away from the final destination. This means, for example, in situations

with low vehicle speed due to high traffic congestion or low speed limits, the driver

tends to start the search sooner to minimize the journey duration.

– An increase in walking speed vw moves the optimal search starting point further away

from the final destination, i.e., implying a sooner starting of the search. Increasing

the vw decreases both RCj+1
j and RCj

j , with the rate of decline of RCj
j being higher.

The proposed simplified model minimizes the journey duration. The assumption is that walking

and driving have the same cost for a given agent. This assumption is relaxed in the general total

cost equation. Personal characteristics of the driver (e.g., age, health status, and preferences),

characteristics of the vehicle (e.g., vehicle size), the trip (e.g., purpose), geographical attributes

(e.g., type of road, and points of interest), traffic situation, weather and other factors affect the

costs. Looking at the general equation to calculate the total cost of the journey, we can draw

more conclusions about the different aspects affecting the starting point of the parking search.

For example, for an elderly person, a person with small children or a person with health issues,

γw may be higher. Additionally, depending on the trip purpose a walking distance may be

more or less acceptable. For example, a person who wants to transport groceries may also have

γw > 1. The same is true for bad weather conditions or inconvenient footpaths. In these cases,

since γw increases and the agent seeks to minimize the TC, he or she tries to reduce Cw by

reducing Tw. This means moving the starting point of the search toward the destination and

also undertaking a long search duration time to find a parking spot close to the destination.

In principle, our theoretical model fits well with the recorded GPS data: The generated points

in the theoretical model can be seen as the waypoints along a GPS trajectory. However, in the

recorded GPS data, the waypoints recording frequency and segment length are not constant and

the speed varies along the way. Section 5 presents the details of how an empirical model can be
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built based on our GPS dataset.

2.4 Empirical methodology

To test the hypotheses derived in the previous section empirically in a multivariate setting, we

specify a (first-order Markov) regression model for the transition from “driving” to “searching”.

This can be accomplished using binary choice models, such as the logit model. In journey i,

at time point t, the agent has the discretion to either initiate the search process or to continue

driving, deferring the start of the search to a later point in time. In our theoretical model, the

agent aims to minimize the total cost of the trip, which can easily be transformed into a utility

maximization problem, with utility of traveling being negative. According to the principles of

Random Utility Theory, the utility of alternative k is determined by the following equation:

Uikt = Xitβk + uik + ϵikt

Uikt Utility of alternative k in the journey i at time t

X Vector of explanatory variables

βk he set of coefficients associated with outcome k

uik Journey-level error term

ϵikt Observation-level error term

The utility can be considered as a random variable, modeled as a linear combination of an

observed and an unobserved term. First, the observed part is represented by the deterministic

component Xitβk, where Xit is a row vector denoting the observed variables (measuring or

being correlated with γ, T , and p) and βk is a column vector of parameters that is to be

estimated and describes the effect of the observed variables on utility. Second, the unobserved

part, or error term, comprises two components. Note that floating car data can be seen as

time series data since the various attributes of a journey are collected along the journey. This

results in a sequence of outcomes for each journey. Even after controlling for Xit, the choices

leading to these outcomes for each journey may, therefore, not be independent. Considering

this unobserved heterogeneity, an additional error component uik is introduced at the journey

level that accounts for the underlying unobserved and time-constant drivers’ preferences and

journeys’ characteristics. This constitutes the first component of the error term. The second

component ϵikt is the observation level error term, which is assumed to have a type I (Gumbel)

extreme-value distribution.

However, as expected from the theoretical model, there are many journeys with a searching

duration (and distance) near zero, implying parking spots are immediately found after starting

to search. After speaking with individuals who used the data collection app, it was discovered

that this phenomenon occurs predominantly in two circumstances. Firstly, there are enough

vacant parking spots at the final destination location. In these situations, drivers drive to the

51



nearest parking spot and park the vehicle there. This corresponds to the minimum possible

journey duration. The second case occurs when the driver has not yet started searching, but

on the way comes across a free parking spot. This could make the driver park the vehicle

immediately and skip the search process. This can be advantageous for a risk-averse driver,

as he or she then knows the remaining journey duration (=walking duration) with certainty,

whereas starting the search later leads to an unknown total journey duration.

To account for the aforementioned possibility, we specify a multinomial logistic model with three

possible outcomes:

• k = 0: The driver has neither started the search nor parked the car. This mode is

characterized as “normal driving”, which indicates a steady state compared to the previous

time point.

• k = 1: The driver starts the parking search. This indicates the transition from “normal

driving” to “searching” and signals the initiation of the parking search.

• k = 2: The driver parks the vehicle immediately without searching. This is the case when

the search duration is zero and the journey does not include a parking search effort. This

outcome indicates the transition from “normal driving” to “parking”.

Given this, Pict, the probability of outcome c in journey i at time point t is calculated as:

Pict = Pr(Yit = c|Yit−1 = 0, Xit, βk, uik) =
eXitβc+uic∑

k∈S eXitβk+uik

where

Yit = k Mode of the driver in journey i at time t

S = {0, 1, 2} Outcome set

We model unobserved heterogeneity (the error component) by random and fixed effects at the

journey level. Note that an error component at the journey level is more flexible than at

the driver level since the number of journeys is higher than the number of drivers. The fixed

effects and random effects estimators differ only in their assumptions about the error component

uik. The random effect estimator assumes that uik is uncorrelated with Xit and has a normal

distribution. In contrast, in case of the fixed effects estimator uik can be correlated with Xit and

no distributional assumptions are necessary. However, this advantage comes with some costs.

Firstly, it is not possible to identify the effects of time-constant variables. Secondly, the fixed

effects estimator cannot be used for predictions of combinations of marginal effects that account

for uik since they are not estimated explicitly.

For these reasons, the fixed effects estimator is just used as a robustness check here. If there

are major differences between the results of the fixed effects and the random effects estimators,

then this is an indication that the assumptions of the random effect estimator are violated. This

comparison between both approaches is the idea of the Hausman test. The H0 is that uik are
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uncorrelated withXit in the model, whileHa is that the uik are correlated withXit are correlated

with the covariates. The fixed effects estimator is consistent under both H0 and Ha, while the

random effects estimator is inconsistent under Ha but efficient under H0. In case of the random

effects estimator, it is possible to test the relevance of the (journey) random effects using an LR-

test against the simple pooled multinomial logit (without modeling unobserved heterogeneity

at the journey level). In order to facilitate the interpretation of the estimation results, average

marginal effects, as well as predicted probabilities depending on specific variables are calculated

from the estimated coefficients.

2.5 Data and descriptive evidence

For collecting ground truth data on cruising for parking, we have developed a mobile application

that has been available on both the Google Play Store and Apple App Store since August 2021

in Europe. The app allows users to log their car journeys and monitor their cruising duration.

After downloading and installing it, users are prompted to provide some personal information.

These are gender, birth year, yearly driven distance, and vehicle type. Answering these questions

is entirely voluntary, and the users can leave them blank. In addition, at the end of each journey,

the users are asked to fill in journey-related questions. These are journey purpose, parking type,

planned parking duration, and familiarity with the destination.

The functionality of the app is intentionally easy, with the main screen featuring a large blue

button, which must be pressed in four steps to record a journey.

• 1st step - start journey: As the drivers start a journey, they press this button that

triggers the recording process. The app records the GPS coordinates of the undertaken

route and the corresponding timestamps and speeds.

• 2nd step - start search: Once the drivers start the search, i.e., when they start to

actively look for a vacant parking spot, they press the button. This records the location

and time of the beginning of the parking search effort along the driving route.

• 3rd step - vehicle parked: Upon finding a vacant parking spot and parking the vehicle,

drivers press the button for the third time. This records the location of the parking spot

and marks the end of the parking search process. This also signifies the start of the walking

path toward the final destination.

• 4th step - destination reached: After reaching the final destination on foot, drivers

press the button for the last time. This marks the location of the destination and the time

of reaching it. This also finalizes the journey and stops recording.

These four steps divide the recorded journey into three distinct parts: driving until the parking

search begins, parking search process, and walking to the final destination. An illustration of a

recorded journey can be seen in Figure 2.6. The app is only used when the driver does not have

a pre-reserved parking space at the end of the trip. That means we do not collect any journey

with drivers parking in their home garage or when they plan to go to a shopping mall and decide
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Figure 2.6: An example journey recorded via the app

beforehand to park in the parking garage of the shopping mall. Nevertheless, the journeys may

still end in parking garages or underground parking when a driver terminates the search after a

certain amount of unsuccessful searching and proceeds to an off-street parking facility.

The app users are volunteer drivers who have expressed interest in contributing to research on

parking search. To promote the app, an advertising campaign was launched utilizing various

mediums, including publication in newspapers, television interviews, and website postings by

municipalities, as well as presentations at conferences. While the majority of the data collection

has taken place in Germany due to a concentrated user acquisition effort, data has also been

obtained from other countries, though it has been excluded from this analysis. It is noteworthy

that a significant proportion of the recorded journeys terminate in Frankfurt am Main due to a

higher concentration of user acquisition efforts in that location.

As of the time of writing this paper, in February 2023, there are over 1,500 individuals who have

downloaded and utilized the app for the purpose of collecting ground truth data on cruising for

parking. Despite this, only 103 of these users have recorded valid trips in Germany, which serve

as the basis for the data analysis.

A trip is regarded as ”non-valid” primarily when users interact with the application for reasons

other than its intended use, such as testing its functionalities or acquainting themselves with

its interface, without implementing it in an actual on-road situation. This often takes place
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at a stationary location, such as a user’s residence, with actions like pressing the button four

consecutive times merely to study the application’s reaction, rather than to collect genuine

driving or parking data. It is not uncommon for users to exhibit this behavior. Such non-valid

instances can be detected through GPS data analysis.

On the other hand, valid trips, which are the focal point of our analysis, are ascertained and

authenticated using several critical parameters, including the journey duration and the Origin-

Destination (OD) distance. The decision of a trip’s validity is governed by specific minimum

values: a journey must last at least 10 minutes and cover an OD distance of at least 1.5 km.

The users have conducted 1795 valid trips using the app between August 2021 and January

2023 in Germany, which are used for parking search modeling. 91 of 103 users have completed

their profile in the app and provided their personal information. In 1,770 out of 1,795 trips,

drivers answered the journey-related questions completely. Variables based on user-related and

journey-related questions are time-invariant, i.e., they do not vary during the journey. Table

2.1 and Table 2.2 provide a summary of the available data, including the possible answers to

the questions and the corresponding descriptive statistics. Note that, in some cases with few

available data points, classes are merged as indicated in the tables.

Table 2.1: Driver characteristics – 103 total drivers

Variables Values Count (rate)

Age [Integer Between 18 and 85] 42.2 Mean

20.0 5%-Q

36.0 Median

72.9 95%-Q

Gender Male 58 (56%)

Female 34 (33%)

Divers 0

Average Yearly Driven Distance Less than 9000 km 30 (29%)

Between 9000 km and 30000 km,

Larger than 30000 km

62 (60%)

Vehicle Type Mini car, Small car 29 (28%)

Compact car 35 (34%)

Family car, Luxury car or SUV 25 (24%)

Van 3 (24%)

User information missing 11 (11%)
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Table 2.2: Journey characteristics – 1795 total journeys

Variables Values
Total

Journeys

Journeys with

Parking Search

Journeys with

Immediate Parking

count proportion count proportion count proportion

Familiarity with Known 1285 (72%) 1043 (70%) 242 (81%)

the destination area Unknown 485 (27%) 436 (29%) 49 (16%)

Planned parking duration Less than 30

minutes

544 (30%) 440 (30%) 104 (35%)

Between 30

minutes and 3

hours

425 (24%) 374 (25%) 51 (17%)

Longer than 3

hours

121 (7%) 107 (7%) 14 (5%)

Parking

associated with

work and home

trips

680 (38%) 558 (37%) 122 (40%)

Journey purpose Shopping 530 (30%) 435 (32%) 95 (32%)

Entertainment 457 (25%) 404 (27%) 53 (18%)

Home 428 (24%) 359 (24%) 69 (23%)

Business Trip, 355 (20%) 281 (19%) 74 (24%)

Work

Journey information

missing

25 (1%) 16 (1%) 9 (3%)

The primary time-based variables for this study are parking search duration (PSD) and walking

duration. The median parking search duration is 58 seconds and the median walking duration

is 69 seconds. The arithmetic means are 101 seconds and 142 seconds. Further statistics can be

seen in Table 2.3. The discrepancy between the means and medians may indicate right-skewed

distributions and/or outlier data points, i.e., instances where users experienced particularly

extended search or walking times. Figure 2.7 visually represents the distribution of parking

search durations. A clear distinction can be made between cases with immediate parking,

depicted by the first bar (green), and the remaining cases by the right-skewed distribution

(blue). These numbers show that the captured parking search durations resonate more with the

figures presented by Hampshire et al. (2016), van Ommeren et al. (2021), and Alemi et al. (2018),

as opposed to the relatively high values reported in Shoup (2006). However, a comprehensive

comparison is beyond the scope of this paper.

Table 2.3: Parking search and walking duration statistics in MM:SS

Variable count 5% 25% median 75% 95% mean std

All Journeys

Parking Search Duration 1,795 00:00 00:22 00:58 01:56 06:08 01:41 02:22

Walking Duration 1,795 00:00 00:12 01:09 03:01 09:42 02:22 03:27

Journeys Including a Parking Search (PSD>0)

Parking Search Duration 1,495 00:16 00:39 01:11 02:19 06:41 02:00 02:27

Walking Duration 1,495 00:00 00:26 01:23 03:11 09:46 02:23 03:27
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Figure 2.7: Parking Search Durations Distribution

In the data, drivers always start their parking search or park immediately only within 1500 m

walking distance of the final destination. Hence, all the points with a remaining walking distance

to the final destination larger than 1500 m are dropped. The time interval for sampling GPS

points along a journey could vary within and between journeys with a mean of approximately 7

seconds; however, it is about 5 seconds for most of the data (median and mode). The final data

used in the multinomial logit model comprises 73,159 GPS points. The count and proportion of

points of each outcome can be seen in Table 2.4. The number for k = 1 indicates that within the

remaining walking distance to the final destination, the average sample probability of switching

from driving to searching is approximately 2.0 % per 7 seconds. 1/6 of “normal driving” ends

with an immediate transition to parking (k = 2).

Table 2.4: Outcomes shares and counts of GPS points in the estimation sample

Outcome Points Count Share

k = 0 (driving before starting the search) 71,364 97.55%

k = 1 (transition to search) 1,495 2.04%

k = 2 (transition to immediate parking) 300 0.41%

Total 73,159 100.00%

Each GPS point in the collected FCD is associated with positional attributes, speed, and times-

tamp. Speed is recorded using smartphone sensors and can be included in the model directly.

For journeys that include a parking search, the mean and median speed values at the point of

starting the parking search are found to be 18.5 km/h and 18 km/h, respectively, with a standard

deviation of 13 km/h. To control for the effect of time of day, hour dummies are constructed

from the timestamp. Night hours are merged from 22:00 to 07:00.

Further data sources are used to enrich the model. Weather information is retrieved from the
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German Weather Service (Deutscher Wetterdienst DWD).3 For each GPS point, we retrieved

temperature and wind speed from the nearest weather station and nearest time point. Since the

weather information is provided on an hourly basis, the collected weather information remains

constant during each journey.

As indicated by our theoretical model, the hypothetical walking distance at each point of the

driving phase should have an influence on starting the parking search. These hypothetical

walking distances must be distinguished from the actual walking route the driver may have

chosen according to the data collection. While the former exist for every single GPS point during

the driving phase, the latter exists only once. This variable (hypothetical walking distance) is

calculated using the Valhalla4 open-source routing engine for each of the 73,159 GPS points.

The GPS points are first map-matched to the underlying road network from OSM.

The variables “search radius” and “accepted walking distance” are essential factors for the

parking behavior. The search radius, representing the air distance from the initial search point

(captured when the drivers pressed the search button) to the final destination location for

journeys including a parking search has a mean value of 145 m, a median of 114 m, and a

standard deviation of 125 m. This represents the usual range of the drivers’ search area. The

accepted walking distance is the hypothetical route a driver would willingly traverse on foot

from the transition point (initiation of the search or immediate parking) to the final destination.

The mean and median of this variable amount to 186 m and 146 m, respectively, with a standard

deviation of 161 m.

In addition, Valhalla provides information about the street intersections along the calculated

shortest path. This could help us to look into the hypothesis that the number of remaining

intersections has an influence on the search starting point. Figure 2.8a represents an example

journey after filtering out the unnecessary points, visualizing the GPS points of the journey and

the destination point, which are used for modeling the search starting point. Figure 2.8b shows

the intersections to be encountered along the route to the final destination.

3DWD is a public institution under the Federal Ministry of Transport and Digital Infrastructure of Germany.
4https://github.com/valhalla/valhalla
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Figure 2.8: GPS points of an example journey used in modeling the search starting point and

the intersections along the route to the destination

We also incorporate spatial data from Open Street Map (OSM), which is introduced as counts

of Points of Interest (POIs) around each GPS point. To accomplish this, a 200-meter radius

was chosen for the calculation of surrounding POIs. This value was selected as it corresponds

to the 0.75 quantile of the search radius around the final destination in the unrestricted dataset.

The POIs were then grouped into categories based on their primary features in OSM5. The POI

categories that are used in the model are amenity, building, office, shop, leisure, and natural.

The parking occupancy near the journey’s final destination impacts the driver’s decision to start

the search according to our theoretical model as it affects p. For instance, a high occupancy

is likely in business districts during working hours or in residential areas overnight. The POI

counts serve as proxy variables for different types of neighborhoods that correspond to different

parking occupancies.

Finally, please note that the parking type (free, paid, or illegal) is a dynamic variable that can

change during the search process, influenced by factors such as available parking options, time

constraints, and personal preferences. Due to its endogenous nature, we have not included it as

an explanatory variable in the regression models.

5https://wiki.openstreetmap.org/wiki/Map features
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2.6 Results and discussion

In order to analyze the influence of the variable speed, it is essential to address an inherent issue

in our dataset with the recorded variables at the moment of initiating the parking search. App

users first decide to start the search and then press the button on the app to label this point. This

action may result in the endogeneity (in the sense of reverse causality) of the recorded variables

at the exact time of pressing the button, as the search process may have actually started several

seconds prior to the button press. Only the variable speed is affected. To mitigate this issue,

we have employed the strategy of utilizing the speed of the preceding GPS point instead of the

current speed. This may solve the endogeneity problem but introduces another complexity.

In our dataset, the time interval between recorded GPS points is not constant. Therefore, we

need to adjust for the fact that a longer time interval means a higher probability of transition. If

the duration to the previously recorded point is longer at a certain point, the driver simply has

more time (and opportunity) to start the search or park immediately. The transition probability

is proportional to the time interval, and the regression model can capture this using a so-called

“offset variable”. Any generalized linear model (GLM) can include an offset variable; in our

case, since the model contains a log link function, the variable “time span from the actual to

the previous GPS point in seconds” is logged. This logarithmic offset is then constrained to 1.

To identify the proposed empirical MNL model, the outcome probability equation must be

normalized according to a base category. We select k = 0, i.e., steady-state in “normal driving”

mode, as the base outcome and restrict the respective parameters to 0, i.e., β0 = 0, ui0 = 0.

We compare three models:

• Model I is the pooled multinomial logistic regression model.

• Model II is the multinomial logistic regression model with journey fixed effects.

• Model III is the multinomial logistic regression model with journey random effects.

Table 2.5 presents a comparison between these three models, accompanied by statistics of

goodness-of-fit. It should be noted that the number of estimated parameters in Model II is

less than in the other models, as the time-invariant variables are excluded in the fixed effects

model. It is important to mention that the number of GPS points is equal across all models. The

results indicate that Model II has the lowest AIC and BIC values and the highest Pseudo R2.

A likelihood ratio test comparing Model III and Model I indicates highly statistically significant

random effects.
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Table 2.5: Model comparison

Statistics
Model I:

pooled mlogit

Model II:

mlogit fixed effects

Model III:

mlogit random effects

Number of Estimated Coefficients 40 9 40

Sample size 73,159 73,159 73,159

Number of groups (=journeys) - 1,795 1,795

Log-Likelihood -7021.1 -2,506.2 -6,926.7

AIC 14,206.1 5,048.3 14,021.4

BIC 14,960.6 5,213.9 14,794.2

Pseudo R2 0.240 0.614 0.250

Almost all estimated coefficients show the same signs for all three models. Despite this, the

result of the Hausman test indicates that there are systematic differences between the coefficient

estimates of the fixed effects and the random effects model, favoring the fixed effects model.

However, this does not mean that the estimation results of the other two models are without

merit. First, the fixed effects model involves fewer assumptions, yet it is not necessarily more

robust in the event of a violation of those assumptions (Townsend et al., 2013). Second, variables

without within-journey variation (e.g., driver-related and journey-related information) are not

estimable with the fixed effects model. Therefore, the results of Models I and III remain valuable

and contribute to our interpretation, at least in a qualitative and comparative way.

The estimated coefficients for outcomes k = 1 (transition to searching) and k = 2 (transition to

parking immediately) are in Table 2.6.
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Table 2.6: Coefficient estimation results

Variable
Model I:

pooled mlogit

Model II:

mlogit fixed effects

Model III:

mlogit random effects

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

Remaining walking

distance [m]

-0.006***

(0.000)

-0.014***

(0.001)

-0.031***

(0.001)

-0.017***

(0.002)

-0.008***

(0.000)

-0.014***

(0.001)

Remaining intersections -0.008**

(0.003)

0.007

(0.008)

-0.027***

(0.008)

0.017

(0.014)

-0.011***

(0.004)

0.006

(0.009)

Speed (t-1) [km/h] 0.027***

(0.007)

-0.232***

(0.026)

-0.218***

(0.014)

-0.549***

(0.050)

-0.026***

(0.009)

-0.277***

(0.031)

Age -0.032***

(0.004)

-0.024***

(0.008)

— — -0.032***

(0.006)

-0.019**

(0.009)

Gender (male) 0.201**

(0.092)

-1.164***

(0.194)

— — 0.354***

(0.129)

-1.204***

(0.217)

Average yearly driven

distance less than 9000 km

-0.132

(0.082)

-0.651***

(0.213)

— — 0.023

(0.112)

-0.540**

(0.239)

Vehicle type

Mini and small: base

Compact -0.199**

(0.088)

-0.038

(0.200)

— — -0.169

(0.120)

0.051

(0.225)

Family, luxury, and SUV -0.224*

(0.130)

0.600**

(0.243)

— — -0.144

(0.177)

0.769***

(0.275)

Van 0.414

(0.293)

-0.390

(1.063)

— — 1.316***

(0.444)

-0.576

(1.174)

User information missing 0.453**

(0.180)

-1.945*

(1.037)

— — 0.671***

(0.260)

-2.171**

(1.096)

Familiar with the

destination area

0.238***

(0.074)

0.808***

(0.199)

— — 0.247**

(0.105)

0.737***

(0.224)

Planned parking duration

Less than 30 min: base

30 min to 3h 0.070

(0.080)

-0.608***

(0.201)

— — 0.360***

(0.116)

-0.526**

(0.230)

Longer than 3h -0.003

(0.129)

0.120

(0.325)

— — 0.134

(0.181)

0.175

(0.367)

Journey purpose

Entertainment: base

Home -0.121

(0.105)

-0.660***

(0.244)

— — 0.110

(0.150)

-0.639**

(0.280)

Shopping -0.194**

(0.086)

-0.110

(0.212)

— — -0.083

(0.122)

-0.125

(0.239)

Work and business -0.479***

(0.104)

-0.326

(0.241)

— — -0.165

(0.148)

-0.239

(0.282)

Journey information

missing

-0.104

(0.289)

0.503

(0.456)

— — -0.108

(0.393)

0.385

(0.524)

Temperature 0.004

(0.004)

0.016*

(0.009)

— — 0.009*

(0.005)

0.022**

(0.011)

Wind speed [m/s] -0.022

(0.019)

-0.022

(0.038)

— — -0.045*

(0.027)

-0.032

(0.043)

POI counts: amenities 0.000

(0.001)

0.003*

(0.002)

0.011***

(0.004)

0.012

(0.010)

0.000

(0.001)

0.002

(0.002)

POI counts: buildings -0.091

(0.064)

-0.384**

(0.155)

-0.105

(0.198)

1.018*

(0.525)

-0.073

(0.080)

-0.370**

(0.181)

POI counts: leisure 0.031**

(0.014)

0.042

(0.039)

-0.060

(0.049)

0.101

(0.085)

0.028

(0.017)

0.047

(0.042)

POI counts: natural -0.000

(0.001)

-0.001

(0.001)

-0.013***

(0.003)

0.002

(0.007)

-0.001

(0.001)

0.000

(0.001)

POI counts: office -0.017**

(0.008)

0.022

(0.019)

-0.071*

(0.037)

0.055

(0.083)

-0.031***

(0.011)

0.019

(0.021)

POI counts: shops -0.000

(0.001)

-0.012***

(0.004)

-0.015***

(0.006)

-0.040***

(0.012)

0.000

(0.002)

-0.012***

(0.004)

Logarithmic time offset

(time span between t-1

and t in sec.)

1 (con.) 1 (con.) 1 (con.) 1 (con.) 1 (con.) 1 (con.)

Const. -2.923**

(1.329)

-16.763

(1,718.969)

— — -4.572***

(1.466)

-10.963***

(3.345)

Note. Estimated standard error in parentheses, ***p ≤ 0.01; **p ∈ (0.01, 0.05]; *p ∈ (0.05, 0.1]

Only the sign and the statistical significance of the coefficients in all three models can be directly
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interpreted in multinomial logit models. For a quantitative interpretation, we calculate Average

Marginal Effects (AMEs) in units of seconds. Due to the unmanageable computational effort,

no standard errors of the AMEs can be calculated. Only AMEs based on statistically significant

estimated coefficients are interpreted. The AME table can be found in Table 2.7 in the Appendix.

The fixed effects estimator has the drawback of not allowing for constructing predictions that

account for journey-level unobserved heterogeneity, so that AMEs cannot be calculated. An

AME can be interpreted as follows: it gives the effect of the respective variable on the transition

probability per second to parking search or immediate parking in percentage points.

Some of the implications of the estimated coefficients and the AMEs are as follows:

• As anticipated, the remaining walking distance to the destination plays a significant role in

determining the timing of starting the parking search, as drivers tend to defer the search

as long as possible to minimize journey duration. The quantitative effect is relatively

consistent across all three models, with Model III indicating that for every 100 m closer

the driver gets to the destination, the probability of starting the search increases by 0.49

percentage points per second. Furthermore, decreasing walking distance also increases the

likelihood of parking immediately. Figure 2.9 illustrates this graphically. This finding is

consistent with the theoretical model.

• Different levels of risk acceptance of the drivers could affect starting the parking search,

and different properties of the destination area (e.g., parking occupancy and prices around

the destination) could affect parking immediately without searching. These and other

unobserved journey and driver characteristics make Model II better suited for studying

the impact of (lagged) speed. In this model, a slower driving speed is associated with

a higher probability of starting the search and parking immediately. Assuming that the

speed in t− 1 is a proxy variable for total driving speed (vd), this result is in line with the

prediction of our theoretical model. Figure 2.10 presents the average adjusted predictions

in response to lagged speed based on Model III. It not only shows the negative effect

of driving speed on the transition to searching, but it also indicates that transition to

immediate parking occurs especially if the speed is very low, for example, during traffic

jams.

• For a one-year increase in the driver’s age, the probability of starting the search decreases

by 0.02 percentage points per second, implying that older people tend to start the search

later. A possible explanation in line with our theoretical model is that younger people

may have a higher walking speed or a generally lower walking cost. The effect of age on

transition probability is visualized in Figure 2.11.

• A driver’s familiarity with the destination zone is positively associated with an increased

probability of starting the search early as well as parking immediately, with an increase

of 0.15 and 0.04 percentage points per second, respectively. This implies that drivers who

are familiar with the area are more likely to initiate the search sooner or park without

searching. Conversely, when drivers are new to the destination area, they may drive

further to familiarize themselves with the parking situation and then start their search. In
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our theoretical model, the probability of parking availability (p) as well as the remaining

distance and the speed of both walking and driving is known by the agent. An extension

that could explain these empirical results is the possibility that drivers unfamiliar with

an area first try to gain knowledge about p as well as the remaining distances and speed.

In contrast, “experienced” drivers already possess this knowledge and therefore tend to

initiate their search earlier.

• A planned parking duration of less than 30 minutes yields a decreased search transition

probability and an increased immediate parking probability. A possible explanation is that

short parking and the activities associated with it (e.g., drop-off or pick-up) allow parking

spots to be ”imperfect” with respect to the driver’s preferences. As a result, drivers may

start their parking search later or immediately settle for the first available space they

encounter.

• Journey purpose also seems to influence the search and parking transition, albeit the

evidence is weak. Journeys toward home have a higher probability of ending without

a search, which can be explained by the fact that in residential areas, parking demand

may be lower than in areas where entertainment activities (base category) occur and that

in residential areas, free-of-charge resident parking is common. Additionally, drivers are

observed to initiate their parking search sooner for journeys with entertainment purposes

compared to other journey purposes. Possible interpretations are that drivers may have a

higher tolerance for walking and a (slightly) lower value of time for this journey purpose

(Wardman et al., 2016).

• A likelihood ratio test of the hour dummies indicates that these variables are highly sig-

nificant (Table 2.8 in the Appendix). In contrast, day-of-the-week dummies are jointly

statistically insignificant and are therefore dropped. The probability of starting the search

soon is higher during rush hours in the mornings and afternoons compared to night hours.

In the context of our theoretical model, the reason could be a slower traffic speed due to

congestion and a possible high parking occupancy (low p) during these hours.

• Given a constant walking distance to the destination, a higher count of remaining intersec-

tions decreases the probability of initiating the search process. One may infer that drivers

exhibit a preference for fewer crossways during the walk. This may arise from the per-

ceived difficulty (waiting times at traffic lights) of passing intersections on foot as opposed

to in a vehicle.

• Looking at POI categories, the coefficients in Model II reveal interesting insights. In

areas with more amenities, such as restaurants and bars, drivers start the search earlier.

Conversely, in areas with many natural objects, such as trees and grasslands, drivers start

the search later. The reason may lie in the correlation with parking occupancy (and hence

p). Generally, in line with the conclusion of our theoretical model, the empirical results

indicate that as finding a vacant parking spot gets more difficult, drivers tend to start

the search sooner and vice versa. Additionally, in areas with many buildings (mainly

residential buildings in OSM), the probability of parking immediately is higher, possibly

due to free parking and higher supply in residential neighborhoods. This may eliminate
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the need to search.

Figure 2.9: Predictive margins of walking distance on the transition probability per second in

percent (based on Modell III)

Figure 2.10: Predictive margins of (lagged) speed on the transition probability per second in

percent (based on Modell III)
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Figure 2.11: Predictive margins of age on the transition probability per second in percent (based

on Modell III)

The probability of starting the search at each point, on average, is 0.21 percentage points larger

per second for men than for women, indicating that men tend to start the search sooner. On

the other hand, men are 0.11 percentage points per second less likely to park their vehicle

immediately without searching. We cannot provide a gender-based explanation for the disparity

between men and women. This outcome could also stem from a potential selection bias resulting

from diverse types and objectives of journeys that are undertaken by men and women even after

controlling for journey purpose and other variables as well as random effects in the model.

Identifying distinct impacts of weather conditions on parking search behavior is associated with

a higher degree of uncertainty due to the relatively large standard errors. The evidence hints

at a potential association between adverse weather circumstances, characterized by higher wind

speeds and lower temperatures, and a later parking search start. This outcome is likely at-

tributable to the increased costs of walking relative to driving in these conditions, as vehicles

furnish drivers with a protective enclosure.

A positive correlation is observed between frequent drivers with an average yearly driven distance

of more than 9000 km and their propensity to immediately park their vehicles without engaging

in a search for parking. This could be attributed to the increased familiarity that frequent

drivers may have with various driving settings, along with their greater experience in navigating

the parking search process.

It is noticeable that a higher-class vehicle may lead to a later start of the parking search. Given

that we do not control for income, a possible hypothesis is that drivers of higher-class vehicles

may be more financially capable of paying for parking in a garage or lot, which eliminates the

need for a time-consuming parking search. Thus, they may initiate their search closer to their

final destination, and if they cannot quickly locate an available on-street parking spot, they
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might abandon the search and proceed directly to an off-street parking facility or an on-street

parking spot with parking fees.

2.7 Conclusion

This study represents a unique contribution to the field of cruising for parking, as it focuses

specifically on the starting point of the parking search process, which is measured empirically

for the very first time. Firstly, a theoretical model has been proposed which seeks to explain

the transition of a driver from the state of “normal driving” (not searching) to “searching”.

This model posits that a rational agent strives to determine the optimal starting point for the

search process, with the goal of minimizing the total cost of the journey. According to this

probabilistic model, the parking search starts if starting the search results in a lower expected

journey duration than driving further away toward the destination.

In support of this theoretical model, we have collected ground truth data on parking search

using a smartphone application developed for this purpose. This app collects floating car data

of volunteer users. In addition to the GPS trajectory, four key points in each journey are labeled

in order to identify the search route and duration. These are the starting point of the journey, the

starting point of the parking search, the location of the parking spot, and the final destination.

Based on this empirical evidence, hypotheses derived from the theoretical model were tested

through a first-order Markov regression via a multinomial logit model with random and fixed

effects that explores what factors to what extent contribute to this transition.

The results of this analysis indicate that driver-related, journey-related, and destination-related

variables significantly impact the starting point of the parking search. For example, younger

drivers, male drivers, and drivers of lower-class vehicles are found to initiate the search process

sooner, possibly due to their higher tolerance for a longer walking distance and/or lower values

of time. Furthermore, familiarity with the destination area was found to lead to an earlier start

of the search process, whereas unfamiliarity with the area makes drivers proceed further toward

their destination to learn about the parking situation. In rush hours and areas with many

amenity points of interest, such as restaurants and bars, drivers are also observed to start the

search sooner.

It is essential, however, to clarify the scope of this study in the context of the specific data

collection method used. Our research was predicated on drivers using the app to start data

recording when they anticipated the need to search for parking, which primarily occurs in on-

street environments. Instances where users had predetermined off-street parking facilities, such

as a shopping mall or a reserved spot at the destination, like a home garage, were typically

not incorporated in the study. Users did not activate the app under such circumstances. It

is noteworthy, though, that there are situations where drivers end up in an off-street parking

facility, but it is generally a result of failing to find an on-street spot. The choice of this

particular data scope was based on the interest of probing into the initial phase of the parking
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search process, predominantly in on-street situations.

In conclusion, our findings are generally consistent with the theoretical model, indicating that

as the difficulty of finding a vacant parking spot increases or the driving speed decreases, drivers

tend to initiate the search process sooner. It was also observed that in certain circumstances,

the parking search process could be omitted entirely, with the vehicle being parked immediately.

Factors such as driving toward home, having a planned parking duration of less than 30 minutes,

and being familiar with the destination area are found to increase the probability of immediate

parking without searching.

The unique dataset, containing the ground truth data on cruising for parking, offers many new

opportunities to explore various facets of cruising for parking from another perspective. In future

works, we plan to provide an econometric model of parking search duration that helps us gain a

more accurate estimation of the marginal effect of various determinants of cruising and leads to

a more precise assessment of the cruising behavior. Ultimately, this could result in new insights

specifically important for policy-makers to improve the parking search situation.

68



2.8 Appendix

Table 2.7: Average marginal effects on the transitions per second in percentage points.

Variable
Model I:

pooled mlogit

Model III:

mlogit random effects

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

remaining walking distance [m] -0.00202***

(0.00009)

-0.00081***

(0.00008)

-0.00491***

(0.00052)

-0.00093***

(0.00013)

remaining intersections -0.00280**

(0.00113)

0.00044

(0.00048)

-0.00705***

(0.00257)

0.00047

(0.00060)

speed (t-1) [km/h] 0.00922***

(0.00239)

-0.01353***

(0.00173)

-0.01514**

(0.00636)

-0.01864***

(0.00312)

age -0.01041***

(0.00147)

-0.00139***

(0.00048)

-0.01984***

(0.00004)

-0.00121**

(0.00061)

gender (male) 0.06462**

(0.02726)

-0.09297***

(0.02202)

0.20758***

(0.07119)

-0.11184***

(0.02882)

average yearly driven distance less than

9000 km

-0.04246

(0.02618)

-0.03336***

(0.01014)

0.01609

(0.07050)

-0.03270**

(0.01309)

vehicle type

mini and small: base

compact -0.06360**

(0.02727)

-0.00197

(0.01151)

-0.10316

(0.07214)

0.00402

(0.01555)

family, luxury, and SUV -0.06926*

(0.03658)

0.04148**

(0.01996)

-0.08921

(0.10160)

0.06358**

(0.02878)

van 0.16851

(0.14368)

-0.01932

(0.04217)

1.42669*

(0.75767)

-0.03393

(0.04205)

familiar with the destination area 0.07541***

(0.02275)

0.03935***

(0.0087)

0.14732**

(0.06262)

0.04196***

(0.01183)

planned parking duration

less than 30 min: base

30 min to 3h 0.02432***

(0.0276)

-0.03028***

(0.00875)

0.24534***

(0.08979)

-0.03215***

(0.01205)

longer than 3h -0.00126

(0.04241)

0.00735**

(0.02097)

0.08710

(0.12513)

0.01225

(0.02856)

journey purpose

entertainment: base

home -0.03826

(0.03292)

-0.03404***

(0.01175)

0.07248

(0.09904)

-0.03907**

(0.01599)

shopping -0.06214**

(0.02681)

-0.00613

(0.01198)

-0.05103

(0.07442)

-0.00807

(0.01558)

work and business -0.13887***

(0.027)

-0.01717

(0.01227)

-0.09832

(0.08486)

-0.01481

(0.01705)

temperature 0.00128

(0.0012)

0.00092*

(0.00057)

0.00534*

(0.00322)

0.00148*

(0.00076)

wind speed [m/s] -0.00734

(0.00635)

-0.00125

(0.00223)

-0.02828*

(0.01689)

-0.00204

(0.00294)

Note. Estimated standard error in parentheses, ***p ≤ 0.01; **p ∈ (0.01, 0.05]; *p ∈ (0.05, 0.1]
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Table 2.8: Coefficient estimation results – Time of the day

Variable
Model I:

pooled mlogit

Model III:

mlogit random effects

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

Transition

to searching

(k = 1)

Transition

to parking

(k = 2)

Time of the day

Night hours: base

07:00 - 08:00 1.153***

(0.286)

0.454

(0.553)

1.217***

(0.398)

0.409

(0.626)

08:00 - 09:00 0.401**

(0.204)

-0.814

(0.555)

0.513*

(0.292)

-0.909

(0.615)

09:00 - 10:00 0.394**

(0.183)

-0.833

(0.566)

0.387

(0.261)

-0.707

(0.609)

10:00 - 11:00 0.124

(0.179)

-0.323

(0.417)

0.164

(0.252)

-0.335

(0.472)

11:00 - 12:00 0.292*

(0.173)

-0.308

(0.434)

0.401

(0.245)

-0.380

(0.488)

12:00 - 13:00 0.198

(0.175)

0.248

(0.405)

0.355

(0.246)

0.295

(0.454)

13:00 - 14:00 0.087

(0.176)

-0.632

(0.403)

0.156

(0.245)

-0.534

(0.455)

14:00 - 15:00 -0.205

(0.178)

-0.605

(0.398)

-0.004

(0.249)

-0.356

(0.455)

15:00 - 16:00 0.141

(0.175)

0.161

(0.396)

0.213

(0.245)

0.170

(0.446)

16:00 - 17:00 0.072

(0.172)

-0.520

(0.415)

0.170

(0.242)

-0.482

(0.464)

17:00 - 18:00 0.079

(0.170)

-0.295

(0.388)

0.072

(0.238)

-0.317

(0.434)

18:00 - 19:00 0.246

(0.169)

-0.100

(0.402)

0.245

(0.239)

-0.123

(0.453)

19:00 - 20:00 0.320*

(0.171)

-0.281

(0.452)

0.396

(0.244)

-0.302

(0.505)

20:00 - 21:00 0.190

(0.183)

-0.237

(0.471)

0.276

(0.260)

-0.231

(0.533)

21:00 - 22:00 0.063

(0.196)

0.087

(0.452)

0.061

(0.275)

0.132

(0.514)

Note. Estimated standard error in parentheses, ***p ≤ 0.01; **p ∈ (0.01, 0.05]; *p ∈ (0.05, 0.1]
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Abstract

To effectively address the challenges posed by parking searches, accurate quantification is es-

sential. This paper introduces a novel methodology to collect unbiased ground truth GPS data

on parking search behaviors. Using a mobile application, we tracked the exact starting point,

chosen parking spot, and final walking destination of over 3,000 trips in Germany from 2021

to 2023. Our findings indicate a mean parking search duration of 1.5 minutes (in large city

centers 1 minute and 53 seconds), a figure notably lower than previous survey-based estimates.

This discrepancy suggests potential biases in traditional parking search surveys, possibly stem-

ming from negativity bias. Our research employs a competing-risks survival analysis model to

investigate factors affecting parking search duration simultaneously across different categories:

Free, Paid, and Illegal parking. This enables the model to examine how the driver’s choice be-

tween Free, Paid, and Illegal parking interacts with and influences the parking search duration.

Furthermore, our duration dependency analysis, facilitated by a time-varying baseline hazard,

reveals that prolonged search duration tends to make drivers more flexible toward less optimal

parking options. This inclination is particularly evident for Paid parking, indicating that as

the search duration extends, drivers increasingly consider Paid parking alternatives. Typically,

drivers prioritize Free parking and opt for Paid options only after unsuccessful initial searches.

This behavior underscores the notion that the coexistence of Free and Paid parking in urban

areas might grow parking search traffic. Additionally, our data shows that approximately 5%

of journeys end in Illegal parking. In these journeys, drivers often predetermine their choice

of Illegal parking, as evidenced by the significantly shorter average search duration for these
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cases and the result that the likelihood of Illegal parking is not affected by the previous search

duration.

Keywords: Cruising-for-Parking, Parking Search Behavior, GPS data, Smart Data Collection,

Survival Analysis

3.1 Introduction

Parking search is perceived as a common problem in densely populated urban areas and has

far-reaching ramifications for transportation planning. The negative effects of parking search

can be classified into four broad categories, namely economic, environmental, social, and safety

impacts, based on the nature of the issues they precipitate (Brooke et al., 2014).

From an economic perspective, parking search poses a substantial burden on both individuals and

the society. For individuals, the cost of searching for a suitable parking spot can be significant,

particularly in urban areas where demand for parking is high (Shoup, 2005). According to

Cookson and Pishue (2017), the average German driver loses 41 hours annually due to the time

spent searching for a parking spot. For the society as a whole, the impacts of parking search are

even more significant. The increased congestion and decreased mobility resulting from drivers

searching for parking can lead to a loss of productivity and increased transportation costs for

businesses (Albalate & Inci, 2018).

From an environmental standpoint, parking search has adverse impacts on air quality, noise

pollution, and the natural environment (Millard-Ball et al., 2014). The increased congestion re-

sulting from drivers searching for parking can lead to elevated levels of air pollution, particularly

in urban areas where the concentration of vehicles is already high (Caicedo, 2010). This can

have a detrimental impact on public health and can contribute to climate change (Alemi et al.,

2018). Furthermore, the increase in traffic on roads during parking search can also result in

elevated levels of noise pollution (van Ommeren et al., 2012), which can have negative impacts

on local communities and wildlife. Attempts to reduce parking search traffic by constructing

new parking facilities can lead to the destruction of natural habitats and the loss of green spaces

(Chester et al., 2011).

From a social perspective, parking search can have several negative impacts on the quality of

life in urban areas. The phenomenon can obstruct individuals’ access to essential services and

institutions, such as schools and hospitals, hindering mobility throughout the city (Dalla Chiara

et al., 2020). Furthermore, the stress and annoyance experienced by drivers during their parking

search endeavors can have a negative impact on their overall well-being (Melnyk et al., 2019).

From a safety perspective, parking search can result in distractions for drivers, which is often

caused by the need to scan the curbside, assess the availability of parking spots, and read parking

restrictions and road markings (Ponnambalam & Donmez, 2020). Driver distractions are well

documented as a major contributor to automobile accidents, accounting for a staggering 68%
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of crashes according to a study for 6 cities in the US (Dingus et al., 2016). Furthermore, the

sudden decreased velocity by initiating the parking search and the sudden braking by observing

a vacant spot can increase the risk of accidents (Sisiopiku, 2001).

In order to effectively tackle the challenges caused by cruising for parking, we need a thorough

understanding of its quantitative significance. This is also crucial for the design and the evalu-

ation of various policies on the issue. Commonly used approaches to measure search duration

include surveys, experiments, analytical techniques, simulations, and the use of GPS data. In

the following section, we present a summary of recent studies published after 2015 that report

search duration and compare the collected values. Although each of these methods offers unique

benefits, and the studies have yielded valuable insights into the cruising phenomenon, to date,

no study has collected ground-truth data regarding parking search duration and path.

In this context, we propose and apply a novel approach for smart data collection that captures

the complete journey trajectory, encompassing the driving phase up to the search initiation

point, the parking search process, and the walking route to the final destination. We developed

a mobile application that precisely captures the search initiation point and ultimate destination

of a journey. These data, in conjunction with the initial point of the journey and the parking

location, typically available in all GPS data, provide a comprehensive framework for analyzing

parking search behavior within the context of car travel. This application has been collecting

data in Germany since 2021.

This study aims to achieve two primary objectives. Firstly, it endeavors to present a descriptive

analysis based on the ground-truth cruising data, which has been collected for the very first

time. Secondly, the study seeks to investigate the factors that contribute to prolonged parking

search durations.

The structure of this paper is as follows: Section 2 offers a concise review of prior research on

cruising for parking, detailing various parking data collection methods and categorizing previous

studies accordingly. Section 3 introduces our innovative data collection methodology. Section

4 presents a comprehensive descriptive analysis of the data, including metrics such as average

search and walking durations, and outlines the dataset prepared for survival analysis. Section 5

explains the reasoning behind our model choice and delves into the model employed to examine

the determinants of parking search. Section 6 showcases the results of our model, discussing its

implications. Section 7 wraps up the paper by summarizing the primary insights and emphasiz-

ing their broader implications.

3.2 Literature Review

3.2.1 Modelling Parking Search Behavior

For several decades, the study of parking behavior has garnered significant interest among trans-

portation experts and urban planners. In earlier research, various methods were employed to
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comprehend the underlying factors that influence drivers’ decision-making regarding parking

type and location (Van Der Goot, 1982).

One of the pioneering studies that underscored the crucial role of parking search behavior in the

context of parking behavior is Polak and Axhausen (1990). This study posited that the search for

parking is intricately linked to drivers’ experience and knowledge, including their understanding

of the spatial and temporal availability of parking spaces and associated costs. The researchers

identified seven distinct search strategies, with one such approach involving circling around the

final destination within a limited radius to locate an on-street parking space, and resorting to

an off-street parking spot only as a last resort following a prolonged unsuccessful search.

Axhausen and Polak (1991) stands out as one of the initial studies to employ a choice model

in examining the selection process of drivers among on-street (Free or Paid), off-street, and

Illegal parking options while incorporating search duration as a significant model determinant.

Following this influential work, numerous studies have adopted choice models, mostly employing

Stated Preferences (SP) data, to scrutinize parking behavior (Hess & Polak, 2004; Ibeas et al.,

2014; Soto et al., 2018). Another influential contribution to the field was the seminal work of

Shoup (2005), which shed light on the fact that low-priced or free on-street parking incentivizes

drivers to engage in ”cruising” behavior, thereby exacerbating traffic congestion. Consequently,

this insight has resulted in a heightened integration of the choice between off-street and on-street

parking options into choice models.

Thompson and Richardson (1998) presented a choice model founded on the principle of utility

maximization for the search process, which integrates a sequence of parking type, location, and

route choices. This model postulates that the driver possesses prior knowledge of the area and is

familiar with all available parking facilities. At each intersection, the driver decides by selecting

the street segment with the highest utility based on various parking characteristics, such as fees,

duration, and distance, or decides to terminate the search and proceed to an off-street facility.

Axhausen et al. (1994) and Arnott and Rowse (1999) propose a simple model that utilizes the

reciprocal of the expected occupancy rate as an approximation for the search time. Empirical

survey data for on-street parking search conducted by Belloche (2015) corroborates these ap-

proaches. Arnott and Inci (2006) and Arnott and Rowse (2009) have devised a parking behavior

model that incorporates both traffic congestion and parking supply and explores pricing policies.

Their findings reveal that curbside parking is considerably underpriced.

Various studies have employed simulation and analytical modeling to explore parking search

behavior. Benenson et al. (2008), Horni et al. (2013), and Levy et al. (2013) have developed

agent-based models for parking, while Cao and Menendez (2015), Liu and Geroliminis (2016),

and Leclercq et al. (2017) have established dynamic macroscopic models. A relatively recent

approach is incorporating computer games in simulations. For example, Geva et al. (2022)

used PARKGAME serious game to model the cruising experience. Simulation modeling is an

efficacious tool for generating distributions for variables of interest, such as parking search dura-

tion and walking distance, and examining the effects of different policies. Fulman and Benenson
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(2021) have estimated the cumulative probability of search duration for a given destination based

on parking demand and supply using an approximation method and validated this approach with

results from an agent-based parking simulation. Ogulenko et al. (2022) have proposed a deter-

ministic model that provides an analytical approximation for parking search characteristics,

including cruising duration and the number of cars engaged in cruising. In a micro-simulation,

Rodŕıguez et al. (2022) combines parking choice and searching models to assess dynamic pricing

policies.

A complex aspect of parking search is the determination of the starting point of the search

process, resulting in a proliferation of divergent hypotheses, which have made the understanding

of the overall parking search process a challenging endeavor (Millard-Ball et al., 2020). The

various assumptions that have been proposed range from the initiation of the car trip by the

driver (Thompson & Richardson, 1998) to the point of arrival at the final destination (Jones

et al., 2017). In addition, arbitrary rules have been established to identify the search process

in floating car data. Notably, threshold approaches (distance-based rules), such as defining an

initial search radius of 400 m around the parking spot, have been employed in some studies

(Montini et al., 2012; Weinberger et al., 2020), whereas others have employed speed-related

rules that incorporate speed and acceleration thresholds (Milia et al., 2023). In simulations, the

starting point can be set through the use of a distance-to-destination parameter derived from a

predetermined distribution or set as a specific value, such as 250 m, as suggested by Benenson

et al. (2008).

van der Waerden et al. (2015) divides the previous studies into studies with a focus on empirical

insights and studies with a focus on model development. In the following, we will deal with the

former.

3.2.2 Measuring Parking Search Duration in Existing Studies

Many studies have reported a mean parking search duration as an indicator of cruising for

parking. We can put the studies that reported a search duration in two categories based on

how parking search duration is collected. The studies have used either direct data collection

or indirect estimation. In the first method, direct data collection, the variable of interest is

directly measured using tools or techniques that are specifically designed for that purpose. By

indirect estimation, the variable of interest is estimated using other variables. This can be done

by using analytical models, statistical models, or simulations.

Direct measurement is generally considered more accurate, but it can also be more expensive

and time-consuming. Indirect estimation can be more efficient, but it may be less accurate if

the underlying assumptions of the model are not met.

Parking search duration is collected directly mainly by:

• Surveys: In these studies, the search duration of drivers was obtained through survey
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reporting. The utilization of surveys to collect data on parking search behavior is proba-

bly the most straightforward and efficient method, commonly employed in various studies.

Such surveys allow for targeted data collection from specific populations and facilitate

policy-makers in prioritizing transportation investments. Furthermore, they offer an ef-

fective tool for evaluating policy outcomes through the collection of pre and post-policy

implementation data. However, surveys also pose certain limitations, including a limited

sample size and high costs, while their relevance may rapidly become obsolete. Addi-

tionally, potential confounding factors such as drivers’ perception of parking search, recall

bias, rounding to minute, or response bias could significantly impact the outcomes of such

surveys. Lee et al. (2017), Qin et al. (2020), and Assemi et al. (2020) are several examples

of studies that have employed surveys as a data collection method.

• Field experiments: In a typical experiment (usually referred to as “park-and-visit”),

a driver initiates the search for a parking spot in a designated area, and the duration

of the search is recorded once a vacant spot is found. This approach provides a higher

degree of accuracy compared to survey-based methods, albeit with limitations of sample

size and cost. However, these field experiments are restricted in their ability to account

for the diverse search strategies employed by drivers due to individual preferences, as they

do not replicate actual journeys. Additionally, these studies may suffer from arbitrary

assumptions such as a vague search starting point. Several examples of this type of study

include Belloche (2015), Alemi et al. (2018), and Zhu et al. (2020).

Parking search duration is calculated indirectly mainly by:

• Simulations: Simulation models are a commonly employed tool in transportation research

that may involve the inclusion of real-world elements, such as street segments, parking lots,

and on-street parking. These models have proven to be cost-effective and easily replicable,

allowing researchers to evaluate different transportation policies across various regions and

settings. However, their accuracy may be limited due to their reliance on assumptions that

may not accurately reflect real-world conditions. Furthermore, simulations are typically

calibrated using input data that may not be entirely accurate, such as an initial search

radius. For instance, Waraich and Axhausen (2012) state that previous parking search

models exhibit a bias towards overestimating search durations. Noteworthy studies in this

realm include Benenson et al. (2008), Gallo et al. (2011), Horni et al. (2013), Arnott and

Williams (2017), and Fulman and Benenson (2018).

• Analytical modeling: This approach uses mathematical modeling and statistical anal-

yses to estimate parking search duration, providing potentially accurate results based on

detailed input data. Such methods are advantageous in that they can be both cost-effective

and flexible, allowing for the integration of various factors related to parking search, such

as spatial characteristics. However, analytical methods are built on simplified assump-

tions that may not hold true in the real world. Additionally, their generalizability is often

limited, since the data required for these methods, such as occupancy rates, may not be

readily available in different geographic regions. Notably, Inci et al. (2017) and van Om-
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meren et al. (2021) employ administrative parking data, encompassing parking arrivals and

vacancies, to estimate parking search duration. Fulman and Benenson (2021) introduces

an approximation model based on parking demand and supply.

• GPS data: Trajectories datasets can be vast and potentially representative. They can

contain millions of real-world journeys, which can be utilized to extract mobility and park-

ing patterns. This method has garnered significant attention in recent years due to the

increasing collection of floating car data across geographical regions. However, working

with GPS data can also pose challenges such as high computational power requirements,

lack of contextual information, and data privacy concerns. In addition, one notable limi-

tation of GPS data is the lack of information regarding the final destination of the journey

and the walking path from the parking spot to the destination, posing considerable dif-

ficulties for researchers. As a result, it is not uncommon for researchers to make a false

assumption that the found parking spot is the final destination, which can lead to er-

roneous conclusions (Montini et al., 2012). When utilizing GPS data to estimate search

duration, two common approaches are employed. The first approach, namely the threshold

approach, involves identifying the search process by determining the starting point of the

search using arbitrary rules. Mantouka et al. (2021) posits an indicator for the initiation

of the search when the remaining distance to the destination increases for the first time

within a 400-meter radius around the parking spot. Alternatively, van der Waerden et al.

(2015) suggests that speed could serve as an indicator for the start of the search and spec-

ifies a rule whereby the search begins when the average speed falls below 23 km/h with

a change rate of less than 5 km/h. In a similar vein, Milia et al. (2023) utilizes speed

thresholds from previous studies. In addition to speed, Hampshire et al. (2016) analyzes

drivers’ body movements in videos recorded during trips to determine the starting point

of the search. The second approach involves defining a radius, such as 400 m around the

parking spot, and assuming that the parking search takes place within this area. The

excess time, defined as the difference between the actual path taken and the shortest path

to the parking spot, is then calculated and referred to as cruising time (Montini et al.,

2012; Mannini et al., 2017; Weinberger et al., 2020; Dalla Chiara & Goodchild, 2020).

Table 3.1 provides a summary of studies. The upper part shows studies that have employed

direct data collection methods to report mean parking search duration (MPSD). The lower part

of Table 3.1 summarizes studies that have used indirect estimation methods.
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Table 3.1: Studies reporting mean parking search duration (MPSD in MM:SS)

Study City Year Method MPSD Further results / notes

Direct Data Collection

Zhu et al. (2020) Ningbo 2020 Experiment 06:02 Park-and-visit experiments

Assemi et al. (2020) Brisbane 2019 Survey 0 (25%)

¡05:00 (40%)

¿05:00 (35%)

Focus on the central business district

Qin et al. (2020) Beijing 2016 Survey 01:00 Focus on the central business district

Cao et al. (2019) Zurich 2016 Survey 0 (61%)

¡05:00 (27%)

¿05:00 (12%)

Longest MPSD observed at noon being 13 min

Alemi et al. (2018) San Francisco 2013 Experiment [00:30, 02:00] Park-and-visit experiments conducted by bikers

Brooke et al. (2018) East Midlands, UK 2014 Survey 01:33

Cookson and Pishue (2017) Frankfurt 2017 Survey 10:00 Surveys done in multiple cities in the US, UK, and Germany

Berlin 2017 09:00

Lee et al. (2017) Brisbane 2015 Survey 15:00

Holgúın-Veras et al. (2016) New York 2015 Survey 26:00 Focus on fleet vehicles with a small sample size (n=16).

Belloche (2015) Lyon 2008 Survey [00:50, 11:06] Various neighborhoods resulting in a wide range of MPSD

Indirect Estimation

Milia et al. (2023) Vesterbro 2019 GPS 02:29 Lower MPSD during the COVID-19 pandemic

Frederiksberg 2019 01:59

Islands Brygge 2019 01:49

Dalla Chiara et al. (2022) Seattle 2021 GPS 01:30 Focus on fleet vehicles

Mantouka et al. (2021) Athens 2018-2019 GPS 02:11 Reported median PSD at 57 s is significantly lower than the

reported MPSD

Fulman and Benenson (2021) Bat Yam Simulation/Analytical [00:00, 10:00] Geographic distribution of MPSD for Bat Yam, revealing

broad MPSD variations across different areas

Dalla Chiara et al. (2021) 2019-2020 GPS 03:48 Focus on fleet vehicles

van Ommeren et al. (2021) Melbourne 2014 Analytical 01:00 MPSD calculated at 90-95% occupancy rates

Weinberger et al. (2020) Ann Arbor GPS 02:06

San Francisco (1) 01:57

San Francisco (2) 02:48

Dalla Chiara and Goodchild

(2020)

Seattle 2018 GPS 02:18 Focus on fleet vehicles

Fulman et al. (2020) 2017-2018 Simulation [00:00, 07:00] PSD collected by a parking computer game on a simulator

Cao et al. (2019) Zurich Simulation [00:00, 14:00] MPSD between 19:00 and 09:00 almost zero. Longest MPSD

between 12:00 and 16:00 being 6-14 min.

Mannini et al. (2017) Rome GPS [00:00, 06:00] Divided Rome into five macro-zones, finding higher MPSD in

the city center.

Hampshire et al. (2016) Michigan, US GPS 00:45 Body movement analysis to identify search initiation in

recorded videos

van der Waerden et al. (2015) Turnhout 2012 GPS 01:18
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A striking observation is the considerable difference in the MPSD reported by studies using

surveys versus those employing GPS data. Specifically, the average MPSD reported by surveys

is approximately 8.4 minutes, while that reported by GPS data stands at 2.1 minutes. Notably,

analytical and simulation models do not typically report a specific MPSD; instead, search dura-

tion is calculated for diverse spatial and temporal settings, yielding a range of realistic durations

for various hours of the day or regions of the city. This disparity in reported MPSD between

survey and GPS studies may be attributed to biases in both methods. One reason could be

that surveys in this domain are often conducted during peak times and in areas where finding

a parking spot is particularly challenging. This approach tends to highlight scenarios where

parking occupancy is near or at capacity, such as in bustling downtown areas or residential

neighborhoods during evening hours. As a result, the surveys may disproportionately represent

the more extreme cases of parking search durations, like those exceeding 10 minutes.

Survey results may also be affected by response biases. It is well established that people tend

to recall highly emotional memories more easily (Tully & Bolshakov, 2010), and when asked

to provide an overall assessment of an experience, they may fail to recognize that an extreme

event is not necessarily representative. An extreme experience of cruising may evoke intense

emotions, further influencing individuals’ judgments and perceptions, ultimately leading to an

exaggerated report of MPSD instead of a more realistic and representative average. The results

of the GPS studies may be biased due the underlying assumptions on the search radius, or the

parking search behavior described above.

Finally, it is noteworthy that median search durations were generally found to be lower than

mean values due to the presence of excessively long searches as outliers. Unfortunately, not all

studies report median durations, so they could not be included in Table 3.1.

Each of the methods previously discussed for estimating parking search duration exhibits sound

reasoning and logical coherence. Nonetheless, none of them can offer genuine ground truth data

on parking search duration for real-world journeys. In the subsequent section, we elaborate on

our approach to tackling this challenge by devising a novel method that enables the collection

of exact parking search durations while circumventing the need for any assumptions. In a sense,

our method combines GPS data with direct data collection.

3.3 Data Collection

As argued above, there are reasons to believe that the parking search duration has not yet

been measured validly for real-world journeys. How can it be measured empirically avoiding

assumptions and response biases? A valid empirical approach is to record the exact time of

starting the parking search and finding a parking spot in an actual journey without affecting

the search behavior.

We developed a mobile application especially for this purpose. This app records the whole

journey from the moment that the driver starts the vehicle to the moment of reaching the final
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destination on foot. The app is designed with a deliberate focus on simplicity and ease of use.

Its main page consists of a centrally located blue button, which must be pressed four times to

completely record a journey (Figure 3.1). When users intend to initiate a car journey, they

must press the ”Start Journey” button immediately before starting driving. This action triggers

recording, with the app beginning to collect Floating Car Data (FCD) from that point. FCD

comprises location data associated with timestamps at short time intervals ranging from two to

five seconds, with additional GPS data collected, such as location accuracy, heading, speed, and

accuracy.

As soon as drivers initiate the search for an available parking spot, they press the ”Start Search”

button, which marks the location and time of the parking search starting point. After success-

fully securing a parking spot, drivers press the ”Vehicle Parked” button, which labels the location

and time of the end of the search, i.e., the parking spot.

The final step entails the driver disembarking the vehicle and walking to their intended desti-

nation. Upon reaching this final destination, drivers press the ”Destination Reached” button,

which marks the end of the journey data collection process.

Figure 3.1: Screenshots of the start2park app showing the four steps of recording a journey

The proposed approach for data collection allows to collect valid parking search data of actual

journeys. A sample journey collected using this app and its fundamental four points are visu-

alized in Figure 3.2. As illustrated in this example, every journey is divided into three distinct

phases: driving until search begins, parking search effort, and walking to the final destination.

To facilitate ease of reference, the phase of driving before initiating the parking search is referred

to as ”normal driving.” The recorded sampling rate for most of the data in this study is 1 second,

ensuring a detailed and precise capture of each phase of the journey.
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This methodology is based on the assumption that the initiation of a parking search is a distinct

point in time, not a continuous transition. We acknowledge, however, that this approach may

oversimplify the complex, subjective decision-making process inherent in initiating a parking

search. Different drivers may perceive the start of a parking search at varying points based on

individual criteria and situational awareness. While our method offers consistency and prac-

ticality in data collection, it might not fully capture the nuanced transitions that mark the

commencement of a parking search for every individual. In future studies, more intricate meth-

ods that integrate behavioral and contextual factors could be explored to define and record

the onset of parking searches with greater precision, better reflecting the drivers’ experiences

(Hampshire et al., 2016).

Furthermore, we must consider the potential behavioral changes induced by the monitoring

process itself. The awareness of being tracked by a mobile application might influence the

drivers’ parking search behavior and decision-making patterns. Participants aware of the data

collection might alter their natural parking search habits, e.g., avoiding certain types of parking,

such as illegal spots. This Hawthorne effect (McCarney et al., 2007), where subjects modify an

aspect of their behavior in response to their awareness of being observed, is an inherent limitation

in studies involving active participant monitoring.

Compared to alternative approaches, particularly threshold-based methods, it is important to

acknowledge the potential similarities in outcomes between these methodologies. Our method

offers significant accuracy when the parking search is brief. However, longer parking search

durations, which are more critical from a practical standpoint, would likely be identified by both

our approach and threshold-based methods. It is worth noting that while our method provides

detailed granularity and a high accuracy in the initial search phase, the overall distribution of

search times may not drastically differ from threshold-based approaches. This similarity suggests

that both methods are valuable in their contexts.
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Figure 3.2: Real-world example of an actual journey recorded by start2park app. Driving until

search begins (blue), parking search route (red), and walking to the final destination (green)

The application is also designed to gather demographic data, activated upon its initial usage

following installation. It requests personal data from the user, including gender, age, annual

average driving distance, and vehicle type. These details are subsequently connected with each

journey the user records via their device. Providing such information, however, is not obligatory.

Users have the right to bypass this step, supply the details at a later time, or simply record

journeys without providing this demographic information.

Besides demographic data, the app also collects information about the journey. Upon completion

of each trip, the driver is prompted to answer four queries concerning the purpose of the journey,

the planned parking duration, his or her familiarity with the destination, and the type of parking

spot. The subsequent chapter provides a descriptive analysis of the potential values for these

driver- and journey-related variables.

Since August 2021, the app has been accessible on both the Google Play Store and Apple App

Store, with interfaces being available in English and German. From the beginning of its launch,

the application’s advertisement campaign has leveraged a multitude of channels, ranging from
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municipal websites and academic conferences to social media platforms, television, radio, and

YouTube channels. These promotional efforts have significantly supported the app’s popularity,

evidenced by its download count in both stores, which has reached several thousand. The

user base comprises primarily volunteers eager to contribute to research on parking search. In

return, the app enables users to log their parking search patterns and durations, providing

detailed analysis for them.

It is crucial to note that the app does not provide additional services, such as facilitating the

search for parking spots. This deliberate exclusion is designed to prevent any potential bias that

could potentially affect the results.

As expected, the app records numerous instances of invalid journeys, resulting in unusable data,

necessitating the implementation of filtering processes. For example, a common instance of

invalid data is when a user, seeking to acquaint themselves with the app’s functionalities, clicks

multiple times consecutively to observe the application’s response and progression. This action

typically yields a rapid succession of data points concentrated in the (almost) same location

within a brief period.

Moreover, standard data cleaning procedures are enacted to remove further instances of invalid

data. These include, but are not limited to, eliminating incomplete trips, journeys exclusively

categorized as ’walking’ or ’searching’, and those exhibiting significant signal loss. Upon the

conclusion of these preliminary data cleaning steps, an additional criterion is applied to the

remaining data. Specifically, a journey must encompass an origin-destination distance of a

minimum of 1.5 km and last at least 10 minutes to be considered valid.

To enrich our dataset of valid journeys, we used additional data sources. Meteorological data,

sourced from the German Weather Service (Deutscher Wetterdienst), were integrated as a single

variable using the temperature degrees measured at the nearest weather station in Germany.

Moreover, each journey is assigned a specific regional classification corresponding to the desti-

nation’s location. The regional classification was accomplished using the RegioStaR (RegioStaR

Creators, 2021) spatial typology, which divides land into distinct levels of urban and rural areas

employing a hierarchical scheme.

For reasons described below, we calculated the hypothetical walking distance from the search

starting point to the final destination using an open-source routing engine called Valhalla (Val-

halla Development Team, 2023). This variable can be interpreted as the hypothetical walking

distance that the driver is willing to go on foot at the end of trip.
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3.4 Descriptive Analysis

3.4.1 Behavioral Patterns in Parking and Walking Durations

In our dataset, recorded from August 2021 to August 2023, 162 users conducted a total of

3564 journeys. These journeys represent the valid trips, constituting approximately 52% of all

initiated journey recordings. Therefore, the average number of valid journeys per driver, based

on this dataset, is 22. Examining the distribution of these journeys among the drivers, we find

that the 5th percentile, median, and 95th percentile for the number of journeys per driver are

1, 3, and 87, respectively. This distribution indicates that a large number of users have logged

fewer than a handful of journeys. In fact, the majority of the journeys are accounted for by

nearly half of the users in the dataset.

The distribution of the Parking Search Duration (PSD) across these journeys is exhibited in

Figure 3.3. Upon close inspection, a clear distinction separating journeys with a PSD nearly

equal to zero from those with a PSD greater than zero is noticeable. This distinction effectively

divides the dataset into two distinct categories. Approximately 18% of the journeys have a

PSD≈0, indicating that the drivers found immediately an acceptable parking spot.

Regarding the peak at 0 seconds observed in Figure 3.3, this phenomenon likely reflects a

specific user behavior associated with the activation of the start button in our app. This peak

represents instances where drivers record the parking search only after they have already parked

their vehicle. Our interviews with volunteer users of the app revealed that most instances of

journeys logged with a duration of 0 seconds occur when enough free parking spaces are available

at the intended destination. In such cases, the driver proceeds directly to the final destination,

parks the vehicle, and then records the duration as zero. However, there are also instances where

the driver, en route to their destination, encounters a vacant parking spot and wants to take it.

In these cases, the observation of the available parking space essentially triggers the initiation

of the parking search, but the duration of this search is recorded as zero since the driver secures

a parking spot immediately and records the duration thereafter.

Our dataset reveals that the MPSD for all journeys is 1 minute and 29 seconds, whereas the

MPSD for journeys with a PSD greater than zero is measured to be 1 minute and 49 seconds.

Additionally, the mean walking duration (WD) is recorded as 2 minutes and 31 seconds for all

journeys and 2 minutes and 52 seconds for journeys where PSD is greater than zero. Detailed

statistical analyses of these time variables can be seen in Table 3.2. Figure 3.3 indicates a

right-skewed distribution implying that medians are smaller than the mean values (Table 3.2).

Accordingly, an extended PSD is a rather rare event, as only 5% of the journeys with a parking

search have a duration of more than 6 minutes and 7 seconds. Furthermore, Figure 3.4 illustrates

the distribution of walking durations. It is noted that the average total time from starting the

parking search to reaching the final destination is 4 minutes and 9 seconds.
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Figure 3.3: Parking Search Duration Distribution

Figure 3.4: Walking Duration Distribution

The mean values in our study are closely aligned with previous research that utilized GPS data

to quantify PSD. This alignment may be attributed, in part, to the fact that GPS-based studies

typically encompass a more comprehensive scope, capturing journeys across various times of the

day and from different areas within a city. This broader approach allows for a more inclusive

representation of parking behaviors, as opposed to surveys that might focus on specific, high-

demand times and locations. Nonetheless, it is noteworthy that our results still fall on the lower

end of the spectrum. This observation confirms the reliability of GPS data as a valuable resource

for investigating parking search behavior, reinforcing its applicability and relevance in this study

area.
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Additional variables to examine are the initial search radius and accepted walking distance. The

initial search radius is the straight-line distance between the start of the search and the final

destination of the journey. The accepted walking distance represents the hypothetical distance

a driver is willing to traverse on foot from the initiation of the search to the final destination.

These variables have been investigated exclusively for journeys that include a parking search

process (PSD>0) in Table 3.3. In this subset of the dataset, the average initial search radius is

140 m, while the average accepted walking distance is 187 m.

Table 3.2: Parking search, walking, and journey duration statistics in MM:SS

Variable count 5% 25% median 75% 95% mean std

All Journeys

Parking Search Duration 3546 00:00 00:18 00:50 01:45 05:27 01:29 02:10

Walking Duration 3546 00:00 00:16 01:07 02:55 10:27 02:31 03:58

Journey Duration 3546 06:23 11:00 16:32 24:24 44:09 19:49 13:51

Journeys with PSD > 0

Parking Search Duration 2908 00:13 00:35 01:04 02:04 06:07 01:49 02:16

Walking Duration 2908 00:01 00:28 01:19 03:10 10:30 02:52 05:34

Journey Duration 2908 06:29 11:08 16:48 24:27 42:57 19:42 13:01

Table 3.3: Initial Search Radius and Accepted Walking Distance for Journeys with PSD > 0 in

Meters

Variable count 5% 25% median 75% 95% mean std

Initial Search Radius 2908 13 52 106 188 368 140 126

Accepted Walking Distance 2908 13 66 139 245 509 187 193

After examining the general trends in parking and walking durations, as well as initial search

radius, we continue by exploring the influence of location types on parking search behavior. This

analysis is pivotal in understanding how urbanization impacts the parking search dynamics. To

this end, we have utilized the RegioStaR classification, a standard regional typology in Germany,

to categorize each journey based on its urban context.

In Figure 3.5, we adopt a non-parametric method, i.e., Kaplan-Meier estimator for visualizing

the survival functions of parking search duration across different regional types in Germany, as

defined by RegioStaR. The survival function gives the proportion of the sample still searching

for a parking after time t. For instance, after two minutes of searching, about 35% of drivers in

large city centers and 21% in the suburban areas of large cities are still looking for parking. In

contrast, in small cities, only 13% of drivers are in search at the same time. The visualization

reveals that PSD tends to increase with the degree of urbanization. Notably, large city centers

exhibit the longest MPSD, standing at 1 minute and 53 seconds, a duration significantly longer

than that observed in other regions, such as small cities with an MPSD of only 50 seconds.

Building on our understanding of regional influences on parking search duration, we proceed to

integrate time of the day into our analysis. This step is crucial as it adds a temporal layer to our
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Figure 3.5: Kaplan-Meier estimate of survival function of parking search durations by regional

types in Germany and corresponding 95% confidence intervals

spatial observations, offering a comprehensive view of how parking search behavior varies not

only across different locations but also at different times. To achieve this, we created Table 3.4,

which combines both the regional typology and time categories. Since for some combinations

the number of observations can be small, the corresponding figures should be interpreted with

caution.

In large city centers, we observe a pronounced trend of longer parking search durations, especially

prominent during morning and noon hours. This phenomenon can be attributed to the high

volume of traffic and limited parking availability typical of bustling urban centers during working

hours. This trend reverses at night, with significantly shorter durations, suggesting a reduction

in parking demand as the city quiets down.

Large cities’ inner urban and suburban areas display a different pattern with moderately long

parking search durations. The suburban areas, in particular, show a peak in parking search

durations at night, possibly linked to residents returning home and competing for limited parking

spaces in residential neighborhoods. During this time, the parking occupancy is probably near

capacity with a low turn-over rate, which makes finding a vacant parking spot challenging.

Contrasting with the urban centers, medium and small cities consistently exhibit shorter parking

search durations. This trend highlights the less congested traffic conditions and more readily

available parking spaces in these less densely populated areas. This suggests that parking search

may not be a relevant problem in those areas.

When it comes to walking durations, for the walk from the parked car to the destination, a

clear distinction emerges between urban and less urban settings. Larger urban areas, especially

city centers, show longer walking durations. This pattern indicates that, in dense urban spaces,
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finding a parking spot close to one’s final destination can be challenging. Conversely, in medium

and smaller areas, the walking durations are notably shorter, pointing to a higher likelihood of

finding parking spots closer destinations.

Another interesting aspect is the initial search radius, particularly during morning hours in large

and medium cities. The larger search radius observed during these hours suggests that drivers

might be more willing to park further from their destination, possibly due to morning work

commutes. As the day progresses into evening and night, we notice a decrease in search radius

in large city centers and suburban areas, with a substantial increase in the latter at night.

This pattern could be indicative of a self-regulatory mechanism in parking search behavior

(Millard-Ball et al., 2020). As parking occupancy increases and finding a spot becomes more

challenging, drivers may start their search earlier, effectively preventing parking search durations

from escalating excessively. This pattern relates to a higher acceptance of the search radius and

consequently increases walking duration. This trade-off reflects a strategic adaptation by drivers

to the evolving parking conditions throughout the day.

The data reveals an adaptive nature of parking search strategies over different times of the day.

Drivers in urban areas, especially during peak hours, appear to navigate a more constrained

environment, adjusting their search strategies accordingly. The variability in both search radius

and parking duration across different times of day underscores the dynamic nature of urban

parking. Longer walking durations in these areas, particularly during peak hours, reflect the

compromises drivers make in response to limited parking availability.
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Table 3.4: Comparative Analysis of Urban Parking Behavior by Time and Location – Search

Radius in Meters, Searching and Walking Durations in MM:SS

Location Type Variable
Early Morning

(04-08)

Morning

(08-12)

Noon

(12-16)

Afternoon

(16-20)

Evening

(20-24)

Night

(00-04)

Large Cities Journeys Count 18* 198 336 426 274 42

(Center)
Mean Initial

Search Radius
119 162 145 134 115 73

Mean Parking

Search Duration
01:21 02:09 02:11 01:54 01:28 00:50

Mean Walking

Duration
01:56 02:55 03:02 02:52 02:40 02:54

Large Cities Journeys Count 18* 129 225 269 133 25*

(Inner Urban)
Mean Initial

Search Radius
69 134 101 129 101 52

Mean Parking

Search Duration
00:24 01:16 01:30 01:23 01:40 01:11

Mean Walking

Duration
02:01 01:44 02:25 02:59 02:56 02:13

Large Cities Journeys Count 20* 191 275 286 72 15*

(Suburb)
Mean Initial

Search Radius
63 131 129 114 114 178

Mean Parking

Search Duration
00:33 01:34 01:12 01:14 01:39 02:42

Mean Walking

Duration
01:06 02:14 02:20 02:11 02:45 02:24

Medium Cities Journeys Count 24* 69 111 102 31 2*

Mean Initial

Search Radius
103 131 96 90 81 0

Mean Parking

Search Duration
00:40 01:09 00:57 00:54 01:24 00:01

Mean Walking

Duration
01:38 02:50 01:32 02:18 03:21 00:01

Small Cities Journeys Count 9* 75 86 86 15 2*

Mean Initial

Search Radius
128 102 96 64 92 29

Mean Parking

Search Duration
00:40 01:06 00:46 00:44 00:48 00:18

Mean Walking

Duration
04:31 01:54 02:04 01:28 01:06 00:20

*Please interpret carefully, as the number of observations is low (< 30).

3.4.2 Parking Dynamics in Frankfurt am Main

Given the geographic focus of our advertising campaign in the city of Frankfurt am Main, Ger-

many, a significant majority of our user base, and therefore, most of the recorded journeys, are

located within this city. Frankfurt am Main, a major metropolis situated in the heart of Europe,

is renowned as one of the continent’s largest transportation hubs. The city’s extensive network

of roads, its bustling airport – one of the world’s busiest – and its status as a key railway junc-

tion all contribute to its vibrant and dynamic traffic landscape. In terms of parking, Frankfurt

presents a challenging environment, particularly in the city center. The high demand for parking

spaces is driven by the influx of commuters, tourists, and local residents, all competing for lim-

ited parking availability. This situation is exacerbated in central areas like the banking district

and around popular destinations such as the Zeil shopping street, where finding a parking spot

can be particularly difficult. Parking search times tend to be longer in these areas, reflecting

high parking occupancy rates.

Among the total dataset, 2363 journeys were collected in Frankfurt, resulting in an MPSD of
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1 minute and 39 seconds across all journeys and 1 minute and 58 seconds specifically for 1982

journeys with a PSD greater than zero. These findings are substantially lower when compared

with the mean value of 10 minutes reported for Frankfurt in Cookson and Pishue (2017) based

on a survey.

To further illustrate the city-specific parking search conditions, Figure 3.6 presents a heatmap

of the MPSD across different areas within the city of Frankfurt. The city center, shown in

this figure, aligns with the RegioStaR regional typology. This visual representation confirms

the existence of significant variations in parking search situations throughout the city. More

explicitly, the heatmap reveals that in particular districts, such as the city center, the MPSD

can rapidly increase, even exceeding 5 minutes. This analysis underscores the profound influence

of location on parking search durations and highlights the differential parking search experiences

across various regions within the same city.

3.4.3 Investigating Driver Behavior Regarding the Distance to Destination

Another metric employed in this analysis is the linear distance to the destination (DtD), com-

puted over time spent searching for parking. The average trend demonstrated in Figure 3.7

suggest intriguing stages of parking search behavior that deserve detailed exploration. However,

before going into detail, it must be stressed that the aggregate data in Figure 3.7 results from

two processes, which cannot be distinguished without deeper analysis:

1. Changing behavior over time / adaption of the search strategy: Drivers may

change their behavior with increasing duration of the parking search. For example, they

may increase their initially chosen search radius (and hence the DtD) after not having

been successful.

2. Sample selection effect: In examining a diverse group of individuals over a specified

duration, the composition of the sample is expected to change. This is because those with

the highest success probability (so-called “hazard”) often leave the sample of “searchers”

earliest. As a result, the overall probability of remaining in the sample (“survival”) for the

entire group changes as time progresses. The sample of trips after 4 or 8 minutes is not

identical to the sample of trips at the beginning of the search. It becomes smaller with

increasing time (resulting in broader 95% confidence intervals) as more trips have ended

after finding a parking spot. This is often called ”weeding out” or ”sorting effect” in the

survival analysis literature (van den Berg 2001). The presence of this phenomenon can

produce survival patterns for sub-populations that are entirely different than the whole

population (Hess & Persson, 2012). Therefore, an increasing DtD may simply reflect the

phenomenon that after some time primarily trips remain in the sample, which have – for

unknown reasons – a larger DtD.
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Figure 3.6: Heatmap of Parking Search Duration in Frankfurt am Main - Highlights Zones of

High and Low Average Search Durations
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Figure 3.7: Average distance to destination over searching time. The light blue area shows the

95% confidence interval.

This ambiguity in the descriptive analysis with respect to the distinction between the two pro-

cesses is one reason to use a survival regression analysis in Chapter 3.5.

According to Figure 3.7, initially the average DtD starts at an approximate 140 m, which

intuitively aligns with the fact that the majority of drivers begin their parking search prior to

reaching their final destination (Millard-Ball et al., 2020). As anticipated, the DtD shrinks, over

the initial seconds, to approximately 100 m, indicative of drivers nearing their destination. This

trend emerges thereafter, with the DtD progressively increasing to approximately 220 m over a

period of 5 minutes of continued search time. To the extent that this is not based on the sample

selection effect described above, this subsequent expansion of the DtD could be attributed to

the failure of initial parking searches near the destination. It is plausible that drivers, unable

to secure a parking spot in the immediate vicinity, are compelled to expand their search radius,

thereby leading to an increased DtD.

Following this, the DtD remains relatively steady in the next phase, fluctuating minimally

until the 11-minutes mark. It is likely that during this stage, drivers are circling the same

general area in hopes of a parking spot becoming available. This period of stability is abruptly

terminated by a sharp rise in the DtD to around 300 m, persisting until about 13 minutes into

the search. This might represent a change in strategy, possibly influenced by growing urgency

or frustration. Drivers might be driving further from their target destination, perhaps in search

of less congested areas. However, also due to the reduced sample size at this time, these changes

are not statistically significant.

This rapid increase is followed by a rapid decrease back to the initial average DtD of 150 m.

The final decrease in DtD towards the end of the search could suggest a return to the vicinity of
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the destination. They might have learned about the parking situation in the area which results

in securing a better parking spot with a shorter walking duration.

3.4.4 Explanatory Variables of the Estimation Sample

We have selected a subset of journeys exhibiting a PSD greater than zero that contains the

driver-related and journey-related information provided by the user. A descriptive analysis of

this filtered sample is presented in Table 3.5 and Table 3.6. This dataset provides the basis for

the analysis in Chapter 3.5. Note that there is a difference between commuting and business-

related in journey purpose. Commuting refers to regular travel between one’s residence and

their primary place of work, like daily drives to an office. Business-related refers to trips made

for professional reasons, but not regular work commutes, such as a craftsman traveling to a site

for repairs.

In advancing our understanding of parking search duration, survival analysis offers a robust and

effective approach. Survival analysis is a statistical methodology often used in medical, social

and economic sciences to analyze the time until the occurrence of a specific event, referred to

as “failure”. In the context of our study, the “failure” event is the completion of the parking

search process. Utilizing survival analysis can facilitate a more comprehensive investigation of

the factors affecting parking search duration, considering the time-varying factors that affect

drivers parking search behavior and success.
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Table 3.5: Journey Characteristics Separated by Parking Type – Values of Categorical Variables

(Absolute Numbers)

Variable
Free

Count

Paid

Count

Illegal

Count

All Journeys

Count

All Journeys 2419 249 146 2814

Gender

Female 264 76 13 353

Male 2155 173 133 2461

Vehicle Type

Compact and Small 2087 209 136 2432

Medium and Large 310 39 5 354

Van 22 1 5 28

Journey Purpose

Home 599 30 18 647

Leisure 692 59 40 791

Shopping 703 89 66 858

Commuting 286 40 1 327

Business-related 139 31 21 191

Area Familiarity

Known 1759 172 86 2017

Unknown 660 77 60 797

Parking Duration

Shorter than 30 min 736 74 116 926

Longer than 30 min 1683 175 30 1888

Area Type

Village or Small City 173 6 6 185

Medium City 210 31 6 247

Large City: Suburban 629 30 22 681

Large City: Inner Urban 554 43 60 657

Large City: Center 853 139 52 1044

Time

Night Hours: 22-07 195 7 14 216

07-10 212 42 8 262

10-13 421 66 25 512

13-16 526 64 27 617

16-19 626 49 49 724

19-22 439 21 23 483

Day of the Week

Weekday 1862 214 104 2180

Saturday 289 19 17 325

Sunday or Holiday 268 16 25 309

Table 3.6: Journey Characteristics Separated by Parking Type – Values of Numerical Variables

Variable Free Paid Illegal All Journeys

Mean Mean Mean Mean Std 5% Median 95%

Age 30 31 24 30 10 21 25 52

Temperature (K) 285 287 284 285 7 273 286 299

Parking search behaviors vary across different parking categories. Specifically, Paid parking

exhibits a longer overall search duration with an MPSD of 2 minutes and 6 seconds compared to
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Free parking with an MPSD of 1 minute and 27 seconds, while Illegal parking demonstrates the

shortest search duration among the three categories with an average standing at 1 minute and

6 seconds. It is important to recognize that the strategy for the type of parking is not perfectly

predetermined before the initiation of the parking search process. As the search unfolds, drivers

may modify their initial strategy and begin to seek alternative parking types, especially switch

from Free to Paid parking. It appears that Free parking is often the first preference for drivers,

with the search for Paid parking options starting only after unsuccessful attempts to locate a

Free parking spot. This observation aligns with the findings reported by Shoup (2005). This

flexibility in strategy underscores the dynamic nature of the parking search process.

In contrast, the majority of Illegal parking instances are characterized by a comparatively shorter

search duration, suggesting that, in many cases, the decision to park illegally is made prior to

the parking search. This could indicate that drivers, in these situations, chose to skip the search

process and park illegally close to final destinations of the journeys. Such events tend to be

associated with shorter parking durations.

3.5 Modeling Search Duration

A natural candidate for modeling the search duration is survival analysis, which deals with

modeling the time it takes until an event of interest occurs (the so-called “survival time”). This

analytical model has recently gained more attention concerning the parking search duration

(Fulman et al., 2020; Zhu et al., 2020; Mantouka et al., 2021). The event here is “finishing

the search process by parking the car”. This event can be further distinguished into (1) “Free”,

(2) “Paid”, and (3) “Illegal” parking spaces. The decisions and hence the search processes are

likely to be interrelated. For example, people may decide to choose Paid parking after having

not been able to find a Free parking spot. Hence, the survival times until the three events are

likely to be correlated, so they have to be modeled simultaneously within a so-called competing

risk model in order to avoid biased estimates (Schmid & Berger, 2021; Schuster et al., 2020).

Generally, it is distinguished between continuous time and discrete time survival analysis. Since

the time frequency of our data is relatively high – 82% of all GPS points are measured every

second – one may argue that the time is measured continuously. However, we have several

reasons for modeling in discrete time – further advantages are discussed in Tutz, Schmid, et al.

(2016):

Non-constant time intervals: Since the GPS points are not sampled continuously, but with

changing frequency, this makes the data inherently discrete. Hence, each GPS data point is

effectively a discrete event, not part of a continual stream of data. For the analysis, these time

intervals are converted into a standardized unit (seconds). In a continuous model, we need to

assume that the time to event follows some continuous distribution, which is a harder assumption

to make with non-uniform sampling intervals. Time Lag between decision making and

recording: The time it takes from when the decision to park until the time the button is
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pressed on the app introduces a discrepancy. This type of measurement error is more naturally

handled in a discrete time framework, as it allows for certain intervals of uncertainty. Duration

dependence: Using a discrete time approach facilitates the interpretation of so-called duration

dependence of the “parking spot finding probability” within a competing risk model. This

means, we can analyze the effect of the search time on probability of finding a Free, Paid

or Illegal parking spot. This can be particularly important in the context of our research,

where the probability of finding a parking spot may change over the search time. Model

flexibility: Discrete time models are flexible and can handle time-varying covariates such as

distance to destination more easily. Model interpretability: Discrete time models tend to be

more straightforward and easier to interpret than their continuous counterparts. This can be

important when communicating the findings to policy-makers or the general public. Especially

the hazard rate (see below) is easier to interpret as conditional probability.

Beyond the reasons outlined previously, this distinction between discrete and continuous time

should be of little relevance in the scope of our research since the discrete time logistic hazard

rate model converges toward the proportional hazard model when the length of the time intervals

approaches zero (Kim, 2014).

We start by describing the single event discrete survival analysis (Tutz, Schmid, et al., 2016).

We have t = 1, 2, . . . , q corresponding to time intervals (0, a1), [a1, a2), . . . , [aq−1, aq), with aq

indicating the upper limit of the final interval. T denotes discrete event time (here, parking

search duration, when the event occurs) T ∈ {1, . . . , q}, implying that if a failure occurs in the

interval [at−1, at) then T = t.

The hazard function in discrete time represents the conditional probability that the time period

T (=search duration) ends at time t, given T ≥ t and the vector of explanatory variables x:

λ(t | x) = P (T = t | T ≥ t,x), t = 1, 2, . . . , q

Here λ(t | x) is the conditional probability of finding a parking spot at time t, given that the

driver has not found a parking spot until then and given x. The values of x may vary over time.

The survival function gives the probability that the event occurs later than at time t, given x:

S(t | x) = P (T > t | x) =
t∏

τ=1

(1− λ(τ | x))

It is linked to the cumulative density function F (·):

S(t | x) = 1− F (t | x) = 1− P (T ≤ t | x) = P (T > t | x)

If the hazard rate is assumed to depend through a logit link on the explanatory variables, we

get the logistic discrete hazard rate model:
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λ(t | x) = exp(α0t + x′β)

1 + exp(α0t + x′β)

In the context of survival analysis with competing risks, the multinomial logit hazard model

is an extension of the logistic discrete hazard rate model (Janitza & Tutz, 2015). This model

is particularly useful when dealing with multiple types of events and when the values of the

covariates can change over time. We denote the hazard function for experiencing the event

j ∈ {1, . . . , J} at time t given a set of covariates x as λj(t | x):

λj(t | x) =
exp(α0jt + x′βj)∑J
k=1 exp(α0kt + x′βk)

We can account for unobserved heterogeneity among drivers and thus capture the influence of

unobserved individual-specific characteristics that are not included in the model as covariates by

considering random effects. For example, some drivers may be more patient or more risk-averse

than others, which could influence their parking search behavior. It also allows for correlations

in the hazards of different parking search events of the same individual.

Here, uij is the random effect for individual i and event j. λij(t | xijt, uij) denotes the hazard

function for driver i experiencing event j given the covariates xijt:

λij(t | xijt, uij) =
exp(α0jt + x′

ijtβj + uij)∑J
k=1 exp(α0kt + x′

ijtβk + uik)

The driver random effects uij are assumed to be normally distributed, with an expected value of

zero and the possibility that the covariance of the random effects of the J events may be unequal

to zero. The latter reflects the possibility that unobserved driver-specific variables affecting the

parking search process with regard to Free parking spots may also affect the parking process

with regard to Paid and Illegal options, and vice versa.

Within our framework of survival analysis of parking search duration, allowing for a time-varying

baseline hazard can be a crucial aspect of the model. This is because the decision to park is

not only influenced by the characteristics of the available parking spots (such as the walking

distance to the final destination as well as Free versus Paid versus Illegal), but also by the elapsed

search time. The assumption of a constant baseline hazard, which implies that the probability

of finding a parking spot remains the same regardless of how long the search has been going

on conditional on x and u, is likely to omit key features of parking search behavior. As the

search duration increases, drivers may become more and more frustrated or impatient, which

means that the perceived cost of continuing the search (in terms of time, effort, and stress) may

increase. As a result, the drivers are more likely to settle for a less-than-ideal parking spot that

they would have previously deemed unsatisfactory. This could include parking spots that are,

for example, smaller, less safe, or more expensive. Consequently, the probability of a parking

event (i.e., the driver finds a parking spot and decides to park) could increase over time, which

would be captured by an increasing hazard function given the values of x and u.

97



An important aspect is how to model the duration dependence of the hazard rate, which is

usually done by assuming a certain functional form of the baseline hazard. Incorporating the

log of search duration into the baseline hazard allows for a flexible and potentially non-constant

baseline hazard (Jenkins, 2005). This assumed functional form seems appropriate according to

the mentioned expected behavior. This can capture complex temporal patterns in the data and

improve the fit of the model. In this version of the competing risk model with random effects,

the hazard function for individual i experiencing event j at time t given a set of covariates xijt

and a random effect uij can be written as:

λij(t | xijt, uij) =
exp

(
α0j + α1j log(t) + x′

ijtβj + uij

)
∑J

k=1 exp
(
α0k + α1k log(t) + x′

ijtβk + uik

)
Here, α0j and α1j are the parameters of the baseline hazard for event j. The term α1j log(t)

allows the baseline hazard to change over time in a natural logarithmic form. The parameters of

the model, α0j , α1j , and βj can be estimated from the data using maximum likelihood estimation

(Lee et al., 2018). The likelihood function for the logistic discrete hazard rate model is derived

from the probability of observing the event times given the covariates, and it can be maximized

using standard numerical optimization techniques.

3.6 Results and Discussion

This section presents the findings from the application of the Discrete Hazard Rate Model to our

dataset, focusing on the explanation of PSD by a variety of driver-related, journey-related, and

spatio-temporal variables. One important variable is missing: the occupation rate of parking

spots in the destination area (Axhausen et al., 1994; Millard-Ball et al., 2014). We try to cope

with this problem by controlling for area type, time of the day and day of the week, which are

highly correlated with the occupation rate (McCahill, 2017; Muleev, 2020).

The results of the model in Table 3.7 provide insights into how these factors influence the

likelihood of finding a parking spot, categorized into Free, Paid, and Illegal parking. The

sampling rate for logging GPS points in the dataset is one second. The hazard rate can be

understood as the probability of finding a particular type of parking spot per second, assuming

the driver is still searching.

The random effects model was compared to the pooled model (multinomial logit without random

effects) using a likelihood-ratio test with the null hypothesis that the variance and covariance of

the random effects are zero (pooled model). This LR-test is known to be conservative, meaning

that the null hypothesis is rejected too rarely (StataCorp, 2023). With a p-value of 1.000,

the test results indicated that the random effects were not statistically significant. Given this

potential bias, we have decided to show the random effects model anyway. 6

6The outcomes of both models are almost identical, with a minor divergence observed in the estimated effects for
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In Table 3.8, we present the estimated standard deviations and correlations for the random

effects associated with different types of parking—Free, Paid, and Illegal. The standard de-

viations capture the extent of the unobserved heterogeneity among drivers. For instance, the

standard deviation for Free parking is the lowest, suggesting that individual differences are least

pronounced in the likelihood of finding Free parking. The covariance between the random effects

for each pair of parking types indicates whether the unobserved factors that make a driver more

likely to find one type of parking also make them more or less likely to find another type. For

example, a negative covariance between Free and Paid parking would suggest that drivers who

are more likely to find Free parking are less likely to find Paid parking, and vice versa. However,

the correlations are insignificant. Collecting more data could provide a more robust basis for

investigating these relationships further and may yield statistically significant results.

The coefficients in the model represent the effect of the corresponding variable on the logarithm

of the hazard rate. Therefore, a positive coefficient indicates that an increase in the variable

leads to an increase in the hazard rate, which in turn implies a decrease in the expected search

duration, and vice versa for a negative coefficient. It is important to note that these coefficients

represent effects on a logarithmic scale due to the model’s log-linear structure. This means that

the effects of the variables are multiplicative with respect to the hazard rates. For instance,

a coefficient of 0.2 for a variable in the model implies that, all else being equal, a one-unit

increase in that variable multiplies the hazard rate by e0.2, which is approximately 1.22, or a

22% increase.

To further enhance our understanding of the magnitude of the estimated effects, we calculated

Average Marginal Effects (AMEs) on the hazard rates. These are additionally embedded in Table

3.7 with the unit “percentage points per second”. AMEs provide a measure of the change in

the predicted probability of an outcome due to a one-unit change in a variable, holding all other

variables constant. This allows us to quantify the effect of each variable on the probability of

finding each parking type (Free, Paid, and Illegal). AMEs are particularly valuable in the context

of multinomial logit models, where the coefficients can be challenging to interpret directly.

To calculate an AME, we increase the variable by one unit for each observation in the dataset

and compute the difference in the predicted probabilities of the outcomes. This difference is then

averaged over all observations to obtain the AME for that variable. This process is repeated

for all variables in the model. The interpretation of AMEs is straightforward. For example,

an AME of 0.5 percentage points for a particular explanatory variable to explain the hazard to

Free parking would imply that a one-unit increase in that variable, on average, increases the

probability of finding a Free parking spot in the next second by 0.5 percentage points, assuming

that all other factors remain constant.

The coefficients and the AMEs for log(t) are positive and significant for Free and Paid parking,

the baseline hazard log(t). Specifically, the random effects model exhibits a marginally stronger positive duration

dependence compared to its pooled multinomial logit counterpart. Detailed results of the pooled multinomial

logit model can be made available upon request from the authors.
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Figure 3.8: The estimated hazard functions for each type of parking (Paid, Free, Illegal) over

time

but insignificant for Illegal parking. This means that as the search duration increases, the

hazard rate of finding a Free or Paid parking spot also increases after controlling for all other

explanatory variables. In other words, the longer a driver spends searching for a parking spot,

the higher their instantaneous probability of finding one. This positive duration dependency of

the hazard rate can also be seen in Figure 3.8, which displays the estimated hazard functions

for each parking type.

The positive duration dependency effect is more pronounced for Paid parking. The higher

positive duration dependency effect for Free parking is easier to comprehend when looking at

the growth rate of the hazard, shown in Figure 3.9, revealing that with every additional second

searching the probability of choosing a Paid parking spot increases faster than finding a Free

spot. In summary, the longer the search duration, drivers become more flexible or willing to opt

for Paid parking compared to Free parking.

Using the standard assumption in theoretical models that drivers seek to minimize the total cost

of journey (van Ommeren et al., 2012), this result can be explained as follows: Drivers tend to

look for Free parking initially. However, as search duration extends and the ideal Free parking

spots remain elusive, drivers weigh the expected cost of continued searching (e.g., in terms of

time, fuel, and frustration) against the cost of Paid parking. At a certain time, continuing the

search for a Free parking results in a higher expected total cost of journey for drivers. This is

when they switch to choose Paid parking.

Despite the growing flexibility towards Paid parking, drivers remain averse to Illegal parking as

the search continues. While there are various strategies for parking illegally (Axhausen & Polak,

1991), one strategy appears to be particularly dominant in our data. Drivers seem to evaluate

the potential costs of Illegal parking before they even start searching. Should the perceived cost
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Figure 3.9: Growth rate per second of hazard function across different parking categories

of Illegal parking be lower than searching, they park close the destination and skip the search

completely. This behavior is confirmed by the complete dataset as well, which shows that the

median search duration recorded for Illegal parking stands only at approximately 39 seconds.

Following, we provide a detailed interpretation of the effect of each variable and discuss their

implications for parking search duration.

• Distance to Destination:

– For all types of parking, an increase in the distance to the destination is associated

with a decrease in the likelihood of finding an acceptable parking spot. The effect

is most pronounced for Illegal parking (AME of -0.16 percentage point), followed by

Free parking (-0.57), and least for Paid parking (-0.09).

– This suggests that the likelihood of finding a parking spot is higher when drivers are

closer to their destination. Most likely, this can be explained by a greater willingness

to accept closer parking options to avoid a long walking route to the destination.

– The stronger effect for Illegal parking could indicate that drivers are more likely

to resort to Illegal parking when they are closer to their destination, possibly due

to convenience or time constraints. These positive aspects of the Illegal parking

spot overweight the expected value of the possibility of a penalty for Illegal parking.

The weaker effect for Paid parking suggests that as the distance to their destination

grows and drivers face difficulties in finding parking, they not only expand their

search radius but are also willing to pay for parking.

– These findings underscore the importance of the drivers’ relative location with regard

to the final destination during the parking search in their parking choice. They

suggest that strategies to guide drivers towards potential parking options closer to

their destination, such as real-time parking information systems, could potentially

reduce parking search durations (Dalla Chiara et al., 2022).
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• Age:

– In the Free and Paid parking category, the coefficients are nearly zero and not sta-

tistically significant, suggesting age does not have a strong effect on the likelihood

of finding an acceptable parking spot.

– As for Illegal parking, older drivers are less likely to park illegally with a 0.09 per-

centage points per second decrease in probability for every 10 years of age. This

could be because older drivers are generally more law-abiding, more risk-averse, or

less willing to take the risk of getting fined or towed. (In our analysis, “Age in 10

years” represents a transformation of the age variable, where each individual’s age

is divided by 10, thereby expressing age in terms of decades rather than individual

years. This is an approach to avoid estimated effects with too many decimal places.)

• Vehicle Type:

– The data reveals no significant disparities in parking probability among small,

medium, and large cars across all parking types. However, a notable exception

is observed with vans, which exhibit a marked increase in the likelihood of Illegal

parking—specifically, a 0.39 percentage point per second increase compared to the

baseline. This heightened tendency for Illegal parking could be attributed to the

larger dimensions of vans, which make parking more challenging. Additionally, vans

are often used for tasks that involve substantial loading and unloading. This may

incentivize drivers to minimize walking distances, leading them to opt for Illegal

parking closer to their destinations.

• Journey Purpose:

– The likelihood of opting for Paid parking is highest for business-related trips, showing

an increase of 0.32 percentage points per second compared to base level journeys to

home. This followed by shopping (0.17 percentage points), leisure activities (0.17),

and commuting (0.09). For business-related journeys, this trend may arise as drivers

are more open to paying for parking during such trips, as the expense can be con-

sidered a business cost, possibly reimbursed by their employer or client. Shopping

and leisure activities often occur in high-demand areas where Paid parking is more

prevalent, justifying the increased likelihood in these categories. This increased ten-

dency towards Paid parking could be due to shopping areas typically having more

available Paid parking options. Generally, the model indicates that drivers looking

for parking during any type of journey are more likely to find a Paid parking spot

compared to when they are returning home. The lowest Paid parking probability is

associated with journeys to home which is reasonable as many people have access to

Free parking near their homes.

– Conversely, the probability of finding Free parking is lower for business-related and

shopping trips compared to home journeys, showing a decrease of 0.31 and 0.13

percentage points per second compared to the base category “home”. The urgency

or time constraints associated with business-related activities may make drivers less

willing to spend time searching for Free parking. For shopping trips, the high-demand
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nature of commercial areas may limit the availability of Free parking.

– As for Illegal parking, the data shows that the likelihood is significantly lower for

commuters and shopping trips, with a decrease of 0.16 and 0.10 percentage points

per second, respectively, compared to home journeys.

• Area Familiarity:

– Drivers familiar with an area show a significantly increased likelihood of finding a

Free parking spot by 0.14 percentage points per second. This can be attributed to

the knowledge these drivers have about the area, including understanding the timing

and location of available Free parking spots.

– There is no significant change in the likelihood of Paid and Illegal parking. One

possible explanation for this could be that familiarity with an area allows drivers to

optimize their search for Free parking, reducing the need to consider Paid or Illegal

options.

• Parking Duration:

– For those planning to park their vehicles for more than half an hour, the chance

of locating a Free parking space significantly drops by 0.18 percentage points per

second, while the likelihood of utilizing a Paid parking space rises. Although it may

initially seem unexpected – considering drivers parking for a longer duration could

save more if they found a Free spot – this trend might be because short-term parking

spots are often Free, while long-term parking typically requires payment. Additional

factors contributing to this pattern include the economic benefits of hourly rates in

Paid parking for longer durations and the enhanced security features commonly

found in Paid facilities.

– Additionally, when planning for an extended parking period, individuals are less

inclined to park illegally by a significant 0.26 percentage points per second since the

risk of getting a ticket or being towed increases with parking duration.

• Area Type:

– As urbanization levels rise, the likelihood of finding a Free parking spot declines,

while the chances of finding a Paid parking option increase. Often because urban

areas are more likely to implement Paid parking systems to manage high demand.

Specifically, in small cities, the probability of finding a Free parking spot increases

by 0.31 percentage points per second compared to the base category “medium-sized

cities”. Conversely, in the city centers of large cities, this probability decreases by

0.38 percentage points per second. This trend suggests that drivers are increasingly

willing to opt for Paid parking as urban density grows. The scarcity of Free parking

in densely populated areas, coupled with the costs of extended search times and fuel

consumption, makes Paid parking a more economically rational choice. Additionally,

Paid parking facilities are often more conveniently located near popular destinations,

minimizing walking duration.

– Regarding Illegal parking, the data does not reveal a uniform pattern across different

types of areas. However, it is notable that the tendency for Illegal parking is higher
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in the inner urban sectors and centers of large cities. In these regions, drivers are

frequently engaged in time-sensitive activities, making them more inclined to risk

Illegal parking for the sake of convenience. The perceived benefits of a prime location

in these areas may outweigh the potential penalties, rendering Illegal parking a more

attractive option.

• Temperature:

– There appears to be a rise in the probability of locating a Free and Paid parking

spots with an increase in temperature. More specifically, the hazard increases by

0.07 percentage point for both Free and Paid parking for every 10 degrees increase

in temperature. This may be due to the fact that in pleasant weather, drivers might

be more willing to accept a less optimal parking spot, for example, with regard to

the walking distance. On the other hand, in adverse weather conditions, drivers

might prefer to find a better parking space, such as one closer to their destination,

to minimize their walking distance.

– The effect on Illegal parking is not statistically significant.
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Table 3.7: Coefficient and Average Marginal Effect (AME in percentage points) Estimation Results –

Discrete Competing Risk Model using Multinomial Logit Hazard with Random Effects and Logarithmic

Time-Varying Baseline Hazard

Variable Free Paid Illegal

coeff. AME coeff. AME coeff. AME

ln(Search Duration)
0.17754***

(0.01830)
0.15471

0.34080***

(0.06208)
0.07131

0.09245

(0.07693)
0.00793

Distance to Destination

(in 100 m unit)
-0.65903***

(0.02926)
-0.57418

-0.42651***

(0.07288)
-0.08793

-1.75975***

(0.22350)
-0.15597

Age

(in 10 years unit)
-0.01647

(0.03186)
-0.01297

-0.07524

(0.12852)
-0.01554

-1.00942***

(0.18610)
-0.08998

Gender

Male
0.09820

(0.12697)
0.08516

-1.08695***

(0.38134)
-0.33118

0.83436

(0.60837)
0.05627

Vehicle Type

Ref: Compact and Small

Medium and Large
0.04999

(0.12538)
0.04465

0.09633

(0.43535)
0.02092

0.35963

(0.67167)
0.03696

Van
-1.09858***

(0.32914)
-0.59901

-1.20639

(1.47950)
-0.15074

1.77373**

(0.83489)
0.39329

Journey Purpose

Ref: Home

Shopping
-0.12949*

(0.07516)
-0.11198

1.10258***

(0.27256)
0.17152

-0.92122**

(0.45305)
-0.1034

Leisure
0.03624

(0.06699)
0.03313

1.10921***

(0.27472)
0.17266

-0.48492

(0.42813)
-0.06564

Commuting
-0.01287

(0.08341)
-0.01023

0.75062**

(0.30570)
0.09645

-2.39645**

(1.04700)
-0.15847

Business-related
-0.30514***

(0.11000)
-0.24468

1.57570***

(0.32756)
0.32021

-0.33391

(0.49442)
-0.04802

Area Familiarity

Known
0.17127***

(0.05471)
0.14469

-0.00841

(0.17684)
-0.00218

0.26886

(0.19377)
0.02348

Parking Duration

Ref: Shorter than 30 min

Longer than 30 min
-0.19990***

(0.05956)
-0.17976

0.20150

(0.18116)
0.04204

-2.49143***

(0.33938)
-0.26137

Area Type

Village or Small City
0.25714**

(0.12294)
0.30929

-0.66928

(0.52208)
0.06485

0.27795

(0.60648)
0.04478

Ref: Medium City

Large City: Suburban
0.04104

(0.10136)
0.04552

-0.52184

(0.35159)
-0.00412

-0.22995

(0.48709)
0.07535

Large City: Inner Urban
-0.13783

(0.10333)
-0.13739

-0.02074

(0.34689)
-0.08486

0.84737*

(0.45900)
-0.01178

Large City: Center
-0.44680***

(0.10115)
-0.38402

0.27227

(0.32226)
-0.10251

0.57695

(0.46395)
0.018

Temperature
0.00826***

(0.00291)
0.00717

0.03371***

(0.01053)
0.00708

-0.00339

(0.01185)
-0.000322

cons
-6.07541***

(0.84526)

-17.16433***

(3.07735)

-2.15961

(3.51694)

Mean Hazard Rate per

Second (percent)

0.79 0.08 0.05

Number of Transitions 2,419 249 146

Number of Drivers 127

Number of Observations

(seconds)

306,214

- Time of the day and day of the week are embedded in the model as control variables in dummies format to compensate for the missing

occupancy rate effect. This includes six time-of-day dummies, one representing night hours between 22:00 and 07:00, and the remaining five

covering three-hour intervals throughout the day. However, they are not shown in this table.

- The pooled logit model provides similar results and is available upon request from authors.

- Standard errors in parentheses

- *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 3.8: Standard Deviation and Correlation of Random Effects for Different Parking Types

Random Effect coeff. SE z p > |z| [95% conf. interval]

sd (Free Parking) 0.4575883 0.0754974 0.3311581 0.6322872

sd (Paid Parking) 1.563323 0.3468271 1.012063 2.414849

sd (Illegal Parking) 1.193339 0.4405616 0.5787806 2.460446

corr (Free, Paid) -0.0877948 0.2308639 -0.38 0.704 -0.4960258 0.3522221

corr (Free, Illegal) 0.1169427 0.3877903 0.3 0.763 -0.573762 0.7104409

corr (Paid, Illegal) 0.0418713 0.4764293 0.09 0.93 -0.7131322 0.7519035

3.7 Conclusion

In this paper, we proposed an innovative approach to collect unbiased ground truth GPS data

of parking search behavior by recording the exact parking search starting point for the first

time besides the parking spot chosen and the final destination after walking. This method is

implemented through a mobile application that records the duration and path of the parking

search. Over the span of 2021 to 2023, more than 3000 trips were recorded by volunteer drivers

in Germany. The data is subsequently employed in a survival analysis model to explore the

factors influencing cruising for parking. Our novel methodology employs a competing-risks

model to analyze the search durations associated with various parking types: Free, Paid, and

Illegal. Another distinctive feature of our methodology is the assumption of a time-varying

baseline hazard, allowing for a duration dependency analysis, i.e., the effect of the previous

search duration – given all other explanatory variables – on the probability of finding a Free,

Paid, or Illegal parking spot can be evaluated.

The application is designed to capture GPS trajectories from the beginning until the end of

a journey. Its user interface is deliberately straightforward, featuring a central button on the

main screen. Drivers initiate the recording by pressing this button. Upon starting their search

for an available parking space, they press the button a second time, marking the exact time

and location where the search began. Once parking is found, another press of the button logs

the parking spot’s time and coordinates. The final button press is made when drivers reach

their final destination on foot, marking the walking route from the parking location to the final

destination.

Our dataset reveals that the Mean Parking Search Duration (MPSD) across all journeys stands

at 1 minute and 29 seconds. Around 18% of these journeys exhibit a Parking Search Duration

(PSD) of zero, suggesting immediate parking without any search effort. For journeys with a

non-zero PSD, the MPSD is observed to be 1 minute and 49 seconds. The area has a significant

effect on MPSD. For instance, in specific regions in the center of the city of Frankfurt, MPSD

can rise up to more than 5 minutes. The average walking time is 2 minutes and 40 seconds for

all journeys and 2 minutes and 52 seconds for those with a PSD exceeding zero. The data also

shows that the average initial search radius (the straight line from the start of the search to the

destination) is 140 m. In addition, the average accepted walking distance (from the start of the
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search to the destination) is roughly 187 m. It is also worth noting that approximately 5% of

the recorded journeys end in Illegal parking.

The values presented in our study are significantly lower than those derived from survey-based

methods. However, they align closely with findings from prior research that employed GPS data

to measure Parking Search Duration (PSD). This observation confirms the reliability of GPS

data as a valuable resource for investigating parking search behavior, reinforcing its applicability

and relevance in this study area. The discrepancy with survey results might arise from the

inherent negativity bias in survey responses. Nonetheless, it is noteworthy that compared to

previous studies that used GPS data, our results fall on the lower end of the spectrum. This

can be attributed to our comprehensive data collection strategy, which captures all geographic

regions, times, and days without limitations. This contrasts with studies that might target

specific high-congestion zones or peak times.

To dive deeper into the factors influencing parking search duration, we employed a survival

analysis model. Specifically, we used a discrete competing-risks model with a Multinomial

Logit Hazard with Random Effects. This model was chosen to study the search durations

associated with different parking categories: Free, Paid, and Illegal. One of its strengths is its

ability to account for the interrelation between decision-making and the search process. For

instance, a driver might initially seek a particular parking type but shift preferences during the

search. Additionally, including a time-varying logarithmic baseline hazard enhances the model’s

flexibility, adjusting the duration-dependent nature of the hazard.

Our findings reveal a positive duration dependency for Free and Paid parking. This trend is

intuitive: as drivers extend their search without success, they tend to relax their criteria, becom-

ing more willing to less ideal parking options, whether due to safety concerns, size limitations,

or cost. This increasing hazard rate is particularly pronounced for Paid parking, suggesting that

as search durations extend, drivers become more flexible toward Paid parking and are willing to

pay the parking cost to minimize the total journey cost.

Demographic and situational factors also play a role. Elderly individuals are less inclined to

shorten their search times by using Illegal parking. Conversely, for short anticipated parking

durations (under 30 minutes), drivers appear more willing to skip the search by parking ille-

gally. Similarly, van drivers are more likely to park illegally. In addition, parking probabilities

varies significantly across journey purposes. Business-related trips predominantly lead to Paid

parking choices, succeeded by shopping, leisure, and commuting, with journeys to home showing

the least inclination towards Paid parking. Expectedly, the search duration increases in larger

cities, descending through medium to smaller cities. With rising degree of urbanization, drivers

increasingly favor Paid parking and face reduced chances of securing Free spots. Finally, famil-

iarity with a destination area also proves advantageous, typically leading to quicker Free parking

spot identification.

Our results suggest that in line with previous research (Shoup, 2005), the coexistence of Free

and Paid parking spaces in cities may increase parking search as drivers tend to search for a

107



Free parking spot first. This may increase the total search duration.

One notable limitation of our study is the representativeness of our sample. While the dataset

offers valuable insights into parking search behavior, it is primarily drawn from a specific group

of app users and may not fully capture the diverse parking behaviors of the broader popula-

tion. Additionally, the awareness that they were being tracked might have altered the behavior

of participants, a common issue in studies involving human observation (Hawthorne effect),

potentially leading to variations in parking patterns.

Another limitation relates to the accuracy and precision in measuring the starting point of the

parking search. Due to various factors, such as forgetfulness or delayed interaction with the

app by users, it is challenging to pinpoint the exact moment when the parking search begins.

These factors contribute to potential measurement errors, which are inherent in studies reliant

on user-operated devices and data collection methods.

Despite these limitations, the unique dataset, containing ground truth data on parking search

durations, presents various intriguing possibilities. For example, in future works, we aim to

develop a prediction model capable of identifying parking search patterns within historical GPS

data. Such a model could be integrated with extensive historical Floating Car Data (FCD)

datasets, facilitating deeper insights into parking search behaviors across various regions or

journey clusters.
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Abstract

The challenge of ”cruising for parking” in urban areas has long been a subject of study, but

existing research often relies on biased surveys or arbitrary assumptions in the absence of ground

truth data. This paper addresses these gaps by introducing the first-ever collection of ground

truth data on parking search durations gathered through a self-developed app. The dataset

encompasses more than 3,500 journeys collected in Germany, with approximately two-thirds of

them ending in Frankfurt am Main. Utilizing this unique dataset, we developed a deep learning

neural network model that accurately identifies parking search routes in GPS data and predicts

search duration. Our model outperforms existing parking search identification models proposed

in previous studies. The model’s efficacy is further evaluated on an independent park-and-visit

dataset and then applied to a large-scale dataset from Frankfurt/Germany. This generates the

first reliable statistics on parking search durations and reveals key insights about parking search

patterns in this city. Notably, the predicted mean parking search duration from this extensive

dataset, comprising over 860,000 journeys, is approximately 1.5 minutes. This work not only

advances the field by providing a new data collection methodology and a superior predictive

model but also offers a reusable framework that can be applied to other cities and datasets for

broader urban mobility insights.

Keywords: Parking Search, Prediction Model, Neural Network, GPS data, Traffic Management
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4.1 Introduction

The rapid urbanization of cities has led to various challenges in transportation and mobility,

one of which is the increasing difficulty in finding parking spaces. As cities grow denser and

vehicle ownership rates rise, the competition for parking has intensified, leading to what is

commonly referred to as ”cruising for parking”. This phenomenon not only contributes to

traffic congestion (Shoup, 2005) but also increases energy consumption and emissions, thereby

exacerbating environmental concerns (Brooke et al., 2014).

To analyze parking search behavior, researchers have used various approaches and tools. Several

studies have relied on surveys (Assemi et al., 2020; Cao et al., 2019; Brooke et al., 2018; Belloche,

2015) to explore parking search duration and behavior. However, these survey-based approaches

are generally not accurate, not representative, and may even be systematically biased (Alemi

et al., 2018). Alternatively, other studies have employed analytical models to estimate parking

search duration (van Ommeren et al., 2021; Fulman & Benenson, 2021) and have performed

simulations (Waraich & Axhausen, 2012; Benenson et al., 2008; Horni et al., 2013; Fulman et

al., 2020) to mainly investigate the effects of different parking policies.

More recently, researchers have turned to GPS data as a potentially more robust source for

analyzing mobility patterns, including parking search behavior (Mannini et al., 2017; Dalla

Chiara et al., 2020; Mantouka et al., 2021; Milia et al., 2023; Bisante et al., 2023). In this

framework, a well-designed parking search prediction model can offer numerous benefits, such

as identifying parking search routes in comprehensive historical GPS data. This, in turn, allows

the generation of statistics about parking search, which may - depending on the historical GPS

data source used - even be representative for an underlying population. Moreover, this enables

the researcher to explore the determinants of cruising and to analyze parking search in various

settings.

Despite the availability of GPS data, existing models for identifying search routes in GPS trajec-

tories are far from being perfect. These models often rely on arbitrary assumptions, which are

largely due to the lack of access to ground truth data on parking search, making these models

less reliable. This absence of accurate ground truth data hinders the development of effective

predictive models and policies aimed at mitigating the parking search problem. Furthermore,

the discrepancies in existing aggregated numbers from various studies make it difficult to trust

the current state of knowledge in this area.

To address these challenges, we developed a specialized app for collecting ground truth data,

marking the first time such data has been systematically gathered. Since the data collection

was based on volunteer test drivers, this ground truth data is anything but representative. For

this reason, based on this training data, we first develop a predictive model labeling parking

search in GPS data of cars. Second, we apply this model to large-scale historical GPS data

to overcome the problem of missing representativeness and to generate robust statistics and

insights, particularly focusing on the city of Frankfurt/Germany.
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The major contributions of this paper are as follows:

• Developing, training, and validating a deep learning neural network model for predicting

parking search based on parking search ground truth data. This model is open-source and

is published on GitHub [github.com/ReLUT/parking-search-prediction].

• Comparing the model’s performance with applied heuristic rules in the literature.

• Applying the model to a large-scale historical GPS data set to generate robust aggregated

statistics for the city of Frankfurt.

• Demonstration of the model’s reusability and applicability to other data sources.

Large GPS datasets, which include thousands of journeys, offer a rich array of data that can

reflect the varied and complex nature of parking search behavior across various cityscapes, times,

and driver demographics. Thus, we aim to ensure that the insights obtained are not confined

to particular use cases or demographics but are instead indicative of the wider population and

numerous urban settings. Understanding parking search behavior is crucial to unraveling the

concealed dynamics that drivers maneuver through in their pursuit of a parking spot (Dalla

Chiara et al., 2021). Examining this behavior through our model allows us to:

• Identify Patterns: Recognize recurring patterns or trends in parking search behaviors, such

as peak search times, preferred search areas, and common search routes (Liu & Geroliminis,

2016).

• Understand Challenges: Gain insights into the challenges drivers face during parking

searches, such as prolonged search times or indirect search routes (Dalla Chiara et al.,

2022).

• Explore Variabilities: Investigate how parking search behaviors vary across different

drivers, times, and urban environments, providing a holistic view of the diverse challenges

and strategies employed by drivers (Polak & Axhausen, 1990).

The insights obtained from our model, when applied to a large-scale dataset, can serve as a robust

foundation upon which impactful policies and urban planning strategies can be formulated.

Understanding parking search behavior better allows us to:

• Optimize Urban Infrastructure: Identify areas where parking infrastructure may be lacking

or underutilized, enabling targeted enhancements to parking facilities and urban infras-

tructure (Cao et al., 2019).

• Inform Policy Decisions: Develop policies that align with the actual needs and challenges

faced by drivers during parking searches, such as dynamic pricing, reserved parking zones,

or incentivized parking (Shoup, 2021).

• Enhance Mobility Solutions: Innovate and implement mobility solutions that can alleviate

parking search challenges, such as smart parking systems, integrated mobility platforms,

or alternative transport solutions (Fahim et al., 2021).

• Reduce Congestion and Emissions: By optimizing parking search strategies and infrastruc-

ture, reduce the time spent by drivers in searching for parking, thereby mitigating traffic

congestion and minimizing vehicular emissions (Millard-Ball et al., 2020).
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The rest of the paper is organized as follows: Section 2 provides a literature review, providing

a comprehensive overview of existing methodologies to estimate parking search duration using

GPS data, highlighting the strengths and limitations of each. Section 3 presents our training

data, elaborating on the data collection app and its associated descriptive analysis. In Section

4, we articulate the design of our model and the features it incorporates. Section 5 starts with

an assessment of the model’s performance, followed by a detailed explanation of the dynamic

park-and-visit dataset used for validation. This section finishes with a comparison of existing

(heuristic) methods to identify parking search in GPS data and our advanced machine learning

approach. Section 6 presents the extensive INRIX dataset, the application of our model to this

dataset, and the key insights derived. Finally, Section 7 concludes the paper, summarizing the

main findings and pointing towards potential directions for future research.

4.2 Literature Review

The utilization of GPS data in studying parking search behavior has been the subject of nu-

merous studies in recent years. The growing interest in this area is largely attributed to the

need to address the challenges posed by urban parking search, particularly in densely populated

cities as well as to the increasing availability of GPS data. Several researchers have explored

the application of GPS data for identifying and analyzing search routes in the context of urban

parking and developed different approaches to estimate cruising time.

A common approach in existing studies involves employing heuristic methods and making ar-

bitrary assumptions to identify parking search routes from GPS data. One straightforward

approach is to designate a radius around the destination of the journey, enclosing the parking

search area. As the destination of the journey is usually not observable in GPS car data the

parking spot finally found is used as the center of the circular search area. Previous studies

indicate that drivers typically search for parking within a range of 200m to 800m around their

destination (Martens et al., 2010; Leclercq et al., 2017; Khaliq et al., 2018; Weinberger et al.,

2020). Bisante et al. (2023), for instance, assume that parking search commences the moment

drivers enter a 200m radius around the destination, distinguishing the remainder of the route

as normal driving.

Another simplistic approach is to use a speed threshold to find the onset of parking search. van

der Waerden et al. (2015) defines parking search based on vehicle speed, positing that a vehicle

is engaged in parking search when its speed falls below a certain threshold. In this method, the

start of the search is marked when the mean of speed over five GPS points is below 23 km/h and

the standard deviation is below 5km/h. In a similar approach, Milia et al. (2023) apply speed

thresholds from earlier studies to detect cruising. Taking a novel approach, Hampshire et al.

(2016) enhances this technique by combining GPS speed data with video analysis of drivers to

pinpoint when parking search begins. In a different heuristic approach, Mantouka et al. (2021)

assumes that the start of parking search occurs at the first local minimum of the distance to the

parking spot within a 400m radius around it. This method is based on the assumption that as
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a driver gets closer to a parking spot, the distance should continuously decrease, and any initial

increase in this distance indicates the commencement of the parking search.

In the exploration of methodologies for identifying parking search in GPS data, it is crucial to

consider a variety of approaches due to the multifaceted nature of the problem. While most

methods aim to pinpoint the exact moment parking search begins within a GPS trajectory, a

further commonly adopted method computes cruising time, defined as the excess travel time

due to parking search. This involves first determining a radius (e.g., 400m) around the parking

spot that encloses the search. Subsequently, the shortest path from the entry point within this

radius to the parking spot is calculated. The difference between the actual driven path and the

shortest path is defined as cruising (Montini et al., 2012; Mannini et al., 2017; Weinberger et al.,

2020; Dalla Chiara et al., 2020, 2022).

Instead of identifying the starting point of the parking search, this method estimates the impact

of parking search on overall driving duration. This paper takes an inclusive approach by con-

sidering this method as well. Although the results of this approach are not directly comparable

to the results of other approaches, the inclusion of this method generates a more comprehensive

summary of parking search identification methods. Moreover, it enriches our understanding of

cruising regarding the estimated excess travel times in a holistic framework containing the exact

search durations.

Finally, a more reliable and accurate approach is using a machine learning model to predict the

parking search phase within a GPS trajectory. Bisante et al. (2023) and Jones et al. (2017)

have employed similar methods to identify cruising for real-time applications, using smartphone

sensor data to train their models. However, neither of these studies has access to ground truth

data to train their models. Consequently, they applied heuristic methods to identify parking

search and used that as training data for their machine learning models. This, in turn, results in

unreliable and invalidated models that act arbitrarily in parking search prediction. A summary

of these approaches can be seen in Table 4.1.
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Table 4.1: Approaches to Identify Parking Search in GPS Data

Approach Studies Category Pros Cons

Approach 1:

Naive 200m

Radius

Bisante et al. (2023) Heuristic • Simple and easy to

implement.

• Needs only GPS locations

data

• May not accurately

represent parking search

behavior in all scenarios.

• Does not consider

variations in driver

behavior or different urban

layouts.

Approach 2:

Speed

Threshold

van der Waerden et al.

(2015)

Milia et al. (2023)

Heuristic • Utilizes available GPS data.

• Relatively straightforward

to implement.

• May misidentify other

slow-driving scenarios (e.g.,

traffic, stoplights) as

parking search.

• Does not consider

variations in driving speed

in different areas.

Approach 3:

First Local

Minima

Mantouka et al. (2021) Heuristic • Attempts to identify a

behavioral change

(searching for parking)

based on distance.

• May work well in certain

urban layouts.

• May be sensitive to GPS

noise or inaccuracies.

• Might misidentify other

behaviors (e.g., missing a

turn) as parking search.

Approach 4:

Actual-

Shortest

Path

Montini et al. (2012)

Mannini et al. (2017)

Weinberger et al. (2020)

Dalla Chiara et al. (2020)

Dalla Chiara et al. (2021)

Dalla Chiara et al. (2022)

Model-Based

/Heuristic

• Provides a quantitative

measure of excess search

time.

• Can be applied uniformly

across various scenarios.

• Assumes all excess time is

spent searching for parking,

which may not always be

true.

• Does not account for

different reasons for taking

a longer route (e.g., traffic,

road closures).

Approach 5:

Machine

Learning

Model

Bisante et al. (2023)

Jones et al. (2017)

Current Study

Data-Driven • Can learn complex patterns

and behaviors from data.

• Potentially more accurate if

trained and validated on

robust, representative data.

• Requires sufficient,

high-quality, labeled

training data.

• Model performance depends

on feature selection, model

type, and hyperparameter

tuning.

The main limitation in all existing studies is the absence of ground truth data on parking

search behavior, which significantly hinders the development and validation of methods to detect

parking search in existing (unlabeled) GPS car data. Consequently, this leads to arbitrary

assumptions, such as defining a specific radius around a parking spot or considering a vehicle to

be searching for parking based on its speed, which cannot be validated against actual parking

search data. Using these simplistic assumptions may not accurately reflect the complexity and

variability of real-world parking search behavior.

4.3 Data

4.3.1 Data Collection App

The necessity for valid empirical measurement of parking search duration (PSD) in real-world

journeys promoted the development of a specialized mobile application designed to accurately

record the exact times of initiating parking search. The app, characterized by its user-friendly

design, records the entire journey, from vehicle start to reaching the final destination on foot,

through a four-step process involving the pressing of a single button at crucial journey phases:
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1. Starting point of the journey, 2. Starting point of the parking search, 3. Parking spot, and

4. Final Destination.

This innovative data collection method divides every journey into three distinct phases: ”normal

driving,” “parking search”, and “walking to the final destination”, providing a first-of-its-kind

opportunity to collect valid parking search data from actual journeys. Additionally, the app

gathers optional demographic and journey-related data from users, offering insights into various

driver and journey variables without mandating user participation in data provision. Two

example recorded journey, collected via this app, are illustrated in Figure 4.1.

The app was designed with a large, centrally located button on the main screen to facilitate

ease of use and minimize distraction while driving. Drivers were instructed to optimally position

their smartphones using a phone mount, ideally situated near the radio or digital media stereo

device of the car. This setup ensures that recording the parking search starting point requires

just a single tap on the screen, a user interaction comparable to common actions in navigation

apps. This design consideration was crucial to ensure that the data collection process did not

compromise the safety of the drivers or other road users. Functionality of the app is explored

more in depth in Saki and Hagen (2024a).

Building upon the foundation of utilizing mobile applications for GPS data collection, several

researchers have previously used similar approaches. Jones et al. (2017) developed ParkUs 2.0,

an app that collects GPS trajectories and relevant smartphone sensor data. While it does

record the start and end points of journeys, it assumes that the parking search begins as soon

as the driver reaches their destination, which may not always mirror actual driver behavior.

Additionally, ParkUs 2.0 offers parking information to assist drivers in finding parking spots.

While this is useful for the user, it introduces a potential bias into the recorded parking search

instances by possibly altering natural search patterns.

Similarly, Bisante et al. (2023) introduced an app that shares more similarities with our approach,

recording users’ journeys from the start of driving to the point of finding a parking spot, but it

does not record the walking path to the final destination. This app also allows users to manually

input their parking search starting point by pressing a button. However, this feature was rarely

used, as seen in only 19 records. Therefore, the researchers defined the ground truth as the

moment drivers entered a 200m radius of the parking spot, a decision that may not accurately

represent varied parking search behaviors.

In contrast, our application carefully records the entire journey without influencing the driver’s

natural parking search behavior by providing parking information. It captures the details of the

journey from the moment driving begins, through the parking search phase, and concludes with

the walking path to the final destination. This approach offers a more complete and unbiased

data collection method, ensuring the reliability and authenticity of the parking search data

gathered. This distinction is vital in providing a more accurate and comprehensive dataset for

subsequent analyses, which will be explored in the following chapters.
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Figure 4.1: Real-world example of two actual journeys recorded via our app - Driving until

search begins (blue), parking search route (red), and walking to the final destination (green)

4.3.2 Data Bias and Behavioral Influences in Data Collection

Addressing the challenge of biased and erroneous data is a critical aspect of our study, given the

potential for inaccuracies coming from user errors, forgetfulness, or systematic issues within the

app’s usage. Recognizing the diversity of ”junk” data, from fleeting, erroneous trips lasting only

a few seconds to systematic errors like double-clicking the parking search initiation button, we

undertook a rigorous data cleaning process. These types of errors, often resulting from initial

user interactions aimed at understanding the app’s functionality or demonstrating it to others,

required deep examination and filtering to ensure the integrity of our dataset.

To mitigate these issues, we established strict criteria for considering a journey as valid data.

Specifically, a journey needed to have a minimum duration of six minutes and cover an origin-

destination distance of at least 1.5 km. Additionally, we imposed limits on the ratio of parking

search to journey duration, as well as walking to journey duration, to identify and eliminate

implausible records. This approach enabled us to remove a substantial portion of inaccurate

data. Journeys that hovered around these thresholds underwent further optical investigation to

ascertain their validity.

Another facet of biased data is related to user behavior, particularly forgetfulness in activating or

deactivating the parking search mode within the app. For example, drivers may forget to hit the

button to indicate parking search and do so when they have parked the car. To address this, we
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compared the actual parking search durations and estimated durations derived from our machine

learning model (and other heuristic methods) for all journeys. Where discrepancies between the

actual and estimated values were substantial, we conducted detailed reviews of the journeys.

This allowed us to identify and exclude cases where patterns of parking search were evident,

but the user likely forgot to interact with the app correctly. However, we acknowledge that for

journeys with shorter search durations, accurately identifying such errors becomes challenging,

leaving room for some residual bias.

Despite these challenges, our comprehensive data cleaning and validation efforts have been piv-

otal in refining the dataset. By applying both statistical descriptions and optical investigations,

we think that we have curated a reliable set of journeys for our analysis.

Furthermore, we also need to acknowledge an intrinsic source of bias, beyond our direct control

or revised measures. This bias comes from the potential alterations in driver behavior as a con-

sequence of their awareness that their actions are being monitored by our app. Such awareness

could inadvertently lead to modifications in their natural parking search strategies— for instance,

drivers might consciously avoid parking illegally or engage in behavior they perceive as more so-

cially acceptable or in alignment with the study’s perceived objectives. This phenomenon, often

referred to as the Hawthorne effect, suggests that individuals may change their behavior simply

because they know they are being observed (McCarney et al., 2007). This effect represents

a fundamental challenge in research that relies on active participant monitoring, introducing

a layer of complexity to interpreting our findings. While our study design and data cleaning

efforts aim to mitigate biases wherever possible, the potential for such behavioral modifications

underscores the need for cautious interpretation of the data and findings, acknowledging this as

an inherent limitation of our research methodology.

4.3.3 Descriptive Analysis of the Ground Truth (Training) Data

Available in English and German on both Google Play Store and Apple App Store since August

2021 until September 2023, the app has collected a substantial dataset comprising over 7,000

initiated journeys. After a rigorous process of cleaning the data and filtering out erroneous and

biased records, a total of 3550 journeys conducted by 162 drivers in Germany, have been identified

as valid trips, which equates to an average of approximately 22 valid journeys per driver. Delving

deeper into how these journeys spread across our cohort of drivers, the engagement levels painted

a varied picture. Specifically, the distribution’s 5th percentile, median, and 95th percentile for

journeys per driver stand at 1, 3, and 88, respectively, indicating a heavy concentration of

activity among a relatively small group of participants. Furthermore, a significant portion of

these journeys, amounting to 2,344 or about 66%, ended within Frankfurt, underscoring the

city’s prominent role in our study’s geographical focus.

Notably, about 18% of journeys exhibit a PSD≈ 0, indicating immediate parking spot acquisition

by drivers. The Mean Parking Search Duration (MPSD) across all journeys is 1 minute and 25
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Table 4.2: Descriptive Statistics of Parking Search and Journey Variables (Duration in MM:SS

Format)

Variable count mean std 5% 25% median 75% 95%

All Journeys

Parking Search Duration 3550 01:25 01:59 00:00 00:18 00:50 01:44 04:59

Walking Duration 3550 02:40 05:20 00:00 00:18 01:08 02:56 10:26

Journey Duration 3550 19:22 13:22 06:20 10:51 16:17 23:56 42:20

Journeys with PSD>0

Parking Search Duration 2924 01:44 02:04 00:13 00:35 01:04 02:01 05:32

Walking Duration 2924 02:52 05:34 00:01 00:28 01:19 03:09 10:28

Journey Duration 2924 19:27 12:43 06:29 11:04 16:35 24:05 42:11

Initial Search Radius (m) 2924 137 123 13 51 104 184 360

Parking Offset Radius (m) 2924 128 118 4 46 97 178 351

seconds, while for journeys with a PSD greater than zero, it stands at 1 minute and 44 seconds.

The mean walking durations are 2 minutes and 40 seconds (all journeys) and 2 minutes and 52

seconds (journeys with PSD>0). Observing that only 5% of parking search journeys exceed 4

minutes and 59 seconds indicates that prolonged PSDs are relatively infrequent. Furthermore,

the Initial Search Radius is explored for journeys involving a parking search (PSD>0), indicating

an average value of 137 m.

The Initial Search Radius refers to the distance between the point where a driver commences

their search for parking and their eventual final destination, which is the location they aim

to reach on foot after exiting their parked vehicle. This metric is pivotal in understanding a

driver’s perceived or acceptable walking distance from where they decide to park to where they

intend to go. The radius essentially captures the anticipatory mindset of drivers, reflecting their

willingness or unwillingness to walk long distances after parking. By examining this radius, we

can infer how close drivers desire to park relative to their end destination, offering insights into

urban planning needs, potential areas for transportation improvements, and the influence of

factors such as weather, physical capabilities, or purpose of the trips on parking decisions.

While the Initial Search Radius provides an indication of a driver’s initially intended walking

distance and can be calculated in our training dataset, certain limitations in other datasets

necessitate the calculation of another derivative metric termed here as the ”Parking Offset

Radius”. A visualization of the Initial Search Radius (ISR) and Parking Offset Radius (POR)

can be seen in Figure 4.2. The POR represents the distance between the starting point of a

driver’s parking search and the location of the parking spot they eventually select. Due to

constraints in many GPS datasets, the exact pedestrian route from the parking spot to the

final destination might not be available, implying that the exact location of the final destination

is unknown. Thus, the POR does not provide a direct measure of the driver’s initial walking

tolerance, but it may serve as a proxy. Analyzing POR gives an impression of the search scope

a driver is willing to undertake before settling on a parking spot. While not as precise as the

desired initial walking distance indicated by ISR, this metric sheds light on driver behavior,

preferences, and the dynamics of parking search patterns in various urban settings. Table 4.2

delves into the statistical nuances of these variables.

Exploring the aspect of speed during the journeys, especially during parking searches, brings
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Figure 4.2: Schematic Representation of Parking Search Parameters, illustrating the Initial

Search Radius (ISR) as the distance from the search starting point to the final destination and

the Parking Offset Radius (POR) as the distance from the search starting point to the chosen

parking spot

Table 4.3: Descriptive Statistics of Speed of GPS points During Normal Driving and Parking

Search (Speed in km/h)

Speed count mean std 5% 25% median 75% 95%

All Driving Points 2,293,850 43 29 5 22 37 57 100

Normal Driving

(within 1 km of Destination)
492,355 30 16 4 19 29 39 57

Parking Search

(within 1 km of Destination)
123,482 16 10 0 8 16 23 36

119



Figure 4.3: Histogram of Speed of GPS Points within 1 km radius of Final Destination, Separated

between Normal Driving and Parking Search (Curves showing the estimated KDEs)

forward some insightful data. Across the 3,550 journeys, we analyzed around 2,293,850 GPS

points, mostly recorded at a 1-second sampling rate. The speed at each point, captured directly

by smartphone sensors (instead of being calculated by timestamp and location), offers a detailed

look into how driving behavior shifts during different parts of a journey. Notably, the average

speed of GPS points during the search for parking drops from 30 km/h to about 18 km/h in

the final kilometer (Table 4.3). This slowdown is a clear indicator of drivers cautiously moving

through areas, likely keeping an eye out for available parking spots. At the same time, the ratio

of the standard deviation to the mean (coefficient of variation) increases (from 0.53 to 0.63),

indicating a less even driving behavior.

Additionally, Figure 4.3 showcases the distribution of speed, distinctly categorized for points

marked as ”searching” and ”normal driving”. This detailed analysis of speed during different

parts of a journey not only confirms that drivers slow down significantly while searching for

parking but also highlights the importance of speed as a key variable in identifying and predicting

parking search behavior in GPS data.

To further enrich our understanding of the dataset, additional details regarding journey and

driver-related variables, and temporal information have been compiled and analyzed. Table 4.4

offers a snapshot of our dataset, shedding light on the diversity of journeys, driver demographics,

and the contextual timing of events. Despite the fact that the contextual data has not been

used in the training process, the inclusion of this information helps to better understand the

data basis.

The drivers journey purposes —encompassing everything from work commutes to leisure out-

ings— alongside a broad demographic spectrum, paints a vivid picture of the dataset’s complex-

ity. Temporal insights, revealing when these journeys typically occur, provide a snapshot of the
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dataset’s dynamics over different times of day and days of the week. More detailed and nuanced

analyses about the parking search behavior can be found in Saki and Hagen (2024a).

Obviously, the data is far from being representative for the population of car trips. However,

this is exactly one of the reasons for developing the prediction model and for applying it to more

comprehensive datasets.

Table 4.4: Descriptive statistics of journey-related and driver-related variables, and temporal

information.

Journey-Related Driver-Related Temporal Information

Variable Count Variable Count Variable Count

Parking Type Age Time of the Day

Free 3043 18-29 1643 Early Morning (4-8) 1173

Paid 280 30-39 1403 Morning (8-12) 1029

Illegal 184 40-49 175 Noon (12-16) 653

Planned Parking Duration 50-59 147 Afternoon (16-20) 522

Less than 30 min 1179 60+ 127 Evening (20-0) 88

Between 30 min and 3 h 878 Gender Night (0-4) 85

More than 3 h 197 Male 2983 Day of the Week

Area Familiarity Female 499 Weekday 2731

Known 2615 Diverse 13 Saturday 432

Unknown 892 Average Yearly Driven Distance Sunday and Holiday 387

Trip Purpose Less than 9000 km 1153

Shopping 1082 Between 9000 and 30000 km 2278

Leisure 932 More than 30000 km 64

Home 807 Vehicle Type

Work 446 Mini Car 1515

Work 446 Compact Car 1472

Middle Class 345

Family Class 134

Van 29

Missing 43 Missing 55

Total 3550

4.4 Model Architecture and Input Features

The development of a predictive model, especially in the context of parking search using GPS

data, requires a method ensuring both precision and usability across different datasets. GPS

car data typically differ with respect to the device with which they are recorded (smartphones,

navigation devices, embedded devices) and the sampling rate of the data points. The funda-

mental goal of this research is to develop a model applicable to large GPS datasets coming from

different sources, thereby overcoming the lack of missing representativeness of the ground truth

data and generating robust aggregated statistics, even in the absence of detailed information

present in our dataset.

Given that most historical GPS datasets primarily contain only driving trajectories from the

starting point to the parking location, without the inclusion of walking routes or additional

contextual information related to the driver or journey, our model had to be developed with a

simplified attribute set. This approach was chosen to ensure that the model remains generalizable
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Figure 4.4: Model Architecture – This model identifies parking search route in GPS data

and applicable to a wide range of datasets, thereby enhancing its utility and relevance in practical

applications.

The model employs a feed-forward neural network, a type of architecture that has demonstrated

proficiency in handling complex patterns within data, especially when the relationships between

input features are non-linear and multifaceted (Ojha et al., 2017). The architecture incorporates

two hidden layers, with 128 and 32 neurons respectively. This specific architecture was chosen

based on preliminary testing and adheres to standards in the field, ensuring a balance between

model complexity and the ability to generalize to unseen data (Karlaftis & Vlahogianni, 2011).

• First Hidden Layer (128 Neurons): This layer is tasked with capturing the initial

patterns and relationships within the input features, providing a foundational basis for

subsequent layers to build upon.

• Second Hidden Layer (32 Neurons): This layer further refines the patterns identi-

fied by the preceding layer, focusing on more nuanced relationships that are crucial to

accurately predicting parking search behavior.

• Output Layer (Sigmoid Activation): The output layer employs a sigmoid activation

function, providing a probability score indicating whether a point is a ”searching” point

or a ”normal driving” point.

• Optimizing Step: This step labels the point as ”searching” or ”normal driving” based

on the searching probability and the optimal cut-off (optimal p) value associated with the

journey’s sampling rate.

The complexity of the model is justified by the necessity to accurately recognize the subtle

and often complex patterns inherent in parking search behavior, which simpler models might

overlook. The architecture of the model is illustrated in Figure 4.4.

For training the model, we test a wide range of variables:
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• Speed: Speed, obtained from smartphone sensors and commonly featured in Floating

Car Data (FCD), is a crucial variable, directly influenced by driver behavior and has been

utilized in previous heuristic models to define searching. It is anticipated that variations

in speed, particularly reductions, may be indicative of a driver initiating their parking

search, navigating through potential parking spots, or maneuvering into a parking space

(see Figure 4.3).

• Acceleration: Acceleration data has been demonstrated to be crucial for travel mode

detection (Feng & Timmermans, 2013). Viewing parking search as a subcategory within

the driving mode, this data can significantly enhance the model’s accuracy. While the

app does not directly collect accelerometer data, incorporating the sampling rate (the

time interval between consecutive points) alongside speed allows us to implicitly integrate

acceleration information into the model.

• Time and Location Variables: Time and location variables are investigated due to

their potential correlation with parking occupancy rates (McCahill, 2017). Different times

of the day or days of the week may exhibit varying levels of parking occupancy, which in

turn, could influence a driver’s decision to start their parking search earlier or later as well

as search success and duration. Furthermore, specific locations may be associated with

distinct parking search patterns due to factors such as proximity to popular destinations,

availability of parking infrastructure, or general traffic conditions.

• Distance to Parking Spot: The distance to the destination is a crucial variable, as it

signifies the driver’s acceptable walking distance. Most drivers aim to minimize their total

journey duration, and this often involves optimizing the walking distance. However, given

that historical GPS data typically doesn’t include the exact final destination, we - in line

with previous research - opted to use the distance to the parking spot as a proxy. (See the

related discussion on ”Initial Search Radius” versus ”Parking Offset Radius” in Section

4.3.3).

• Sampling Rate: Our dataset, which is recorded at a high frequency, predominantly fea-

tures a 1s sampling rate. However, this level of granularity is not a common characteristic

across all datasets. To ensure that the model remains applicable to datasets with varied

sampling rates, we used it as an input variable in the model. Additionally, we created data

subsets with average sampling rates of 5s, 10s, and 15s. The model was then retrained on

these subsets, thereby enhancing its robustness and ensuring its applicability to datasets

with different sampling rates.

• Lagged Variables: For time-varying variables such as speed and sampling rate, the values

of five previous points are incorporated into the input vector reflecting the possibility that

the start of parking search is not only triggered by contemporaneous variables but also by

lagged variables.

• Additional Variables: While additional variables such as weather data are incorporated

into the model, their influence on parking search behavior are evaluated during the model

training process.

The next section will evaluate the relevance of these variables / input features. Through the
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design of this model, we have strived to create a tool that is not only accurate in its predictions

but also versatile in its applications. By ensuring that it can be applied to various datasets

with different characteristics, we enhance its utility and potential impact in the field of parking

search analysis, providing a valuable resource for future research and practical applications in

urban mobility and planning.

4.5 Model Performance

4.5.1 Training and Evaluation

The training process is divided into two stages. In the first stage, the weights of the neural

network are calculated using a binary cross-entropy loss function. The model employs a sigmoid

function in its output layer, which yields a probability score for each GPS point, indicating the

likelihood that the driver is engaged in parking search behavior at that particular point.

Specifically, the model outputs a probability value between 0 and 1 for each GPS point, where

a higher value signifies a higher probability that the point is part of a parking search route. In

practical terms, these probability scores act as a subtle tool to decode the start and duration

of parking search within a journey. By identifying points with high probabilities, the model

outlines the transition from normal driving to parking search. The f1-score, a harmonic mean of

precision and recall, was selected as the performance metric during the initial stage of training.

The choice of f1-score is grounded in its ability to balance both precision and recall, providing a

comprehensive view of the model’s performance across both metrics. In our framework, precision

is the accuracy of positive predictions, which is crucial to ensure that the identified parking search

points are indeed accurate and not false positives. In contrast, recall is the ability of the model

to correctly identify all actual instances of parking search points, which is vital to ensure that

all relevant data points are captured.

Since both false positives and false negatives have significant implications in the context of

parking search behavior analysis, the f1-score becomes a relevant metric, ensuring that the model

does not disproportionately prioritize either precision or recall, thus maintaining a balanced

predictive ability.

The second stage of the training process involves determining the optimal probability cut-off

through grid search, with the objective of minimizing the Mean Absolute Error (MAE) in PSD.

Once the model identifies the transition from normal driving to searching, it categorizes the

remaining route as the parking search. This is based on the assumption that after there has

been a “switch” from “Normal Driving” to ”Searching”, a switch back is no longer possible.

MAE represents the average absolute differences between the observed actual outcomes and the

predictions made by the model. In the grid search process, MAE is selected as the primary metric

due to its robustness against outliers, which is essential given the right-skewed distribution of

PSD that includes extreme values. MAE’s straightforward interpretability is advantageous, as
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it directly reflects the average prediction error in PSD, providing clear practical significance.

Moreover, MAE aligns well with the core objective of precisely identifying the complete search

route by measuring the direct deviation from the predicted PSD.

The dataset was partitioned into training and test sets, with the test set comprising approxi-

mately 10% of the total data. This partitioning ensures that the model is exposed to a diverse

range of data during training while also reserving an unbiased subset of data for validation

purposes.

To further enhance the robustness of the validation process, a k-fold cross-validation technique

was employed with k being set to 10. The choice of k=10 is based on its widespread adoption

in similar studies, striking a balance between computational efficiency and obtaining a reliable

estimate of the model’s performance (Kohavi et al., 1995). In this approach, the dataset is

partitioned into 10 subsets; the model is trained 10 times, each time using 9 subsets for training

and the remaining subset for testing. This approach not only maximizes the utility of available

data but also provides a more reliable and generalized performance estimate by mitigating the

potential biases or variances that might arise from a single random data split (Fushiki, 2011).

The model’s performance was eventually evaluated by assessing the MAE in PSD and comparing

the actual and predicted MPSDs on an aggregate level. The MAE provides a straightforward,

interpretable measure of the average error in the predicted PSD, while the comparison of MPSD

offers insights into the model’s ability to accurately predict average parking search durations

across different journeys.

In refining our predictive model, we initially conducted a feature importance analysis using

the Leave-One-Out (LOO) method (Lei et al., 2018) to understand the impact of each variable

within the model. The LOO method is an approach where, one by one, each variable is excluded

from the model, and the performance is assessed without it. This technique helps in identifying

the contribution of individual variables to the model’s accuracy.

Figure 4.5 illustrates the f1 scores for models trained with one variable excluded at a time,

with the excluded variable displayed on the x-axis. The y-axis shows the f1 scores, reflecting

the model’s performance without the respective variables. The variables are ordered by their

impact on model performance, in descending order of the f1 score. As anticipated, ”Distance

to Parking Spot” and ”Speed” emerged as the most influential variables. The other variables,

while seemingly similar in their impact, exhibit varied levels of importance, with ”Weather”

being the least influential.

Given our objective to develop a generalized model with wide applicability to diverse datasets,

strategic decisions regarding variable inclusion were necessary. ”Heading” and ”Weather” data

are often not recorded in large datasets, and while there are methodologies to approximate

these when missing, the variance from internal readings can pose challenges in cross-dataset

application. ”Area Type” was also considered for exclusion to prevent potential bias, as it could

inadvertently introduce a predisposition towards Frankfurt, where the majority of our data was
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sourced.

Subsequent models were trained using ”Speed” and ”Distance to Parking Spot” as base variables,

with the inclusion of various combinations of the remaining variables. Through this iterative

process, we found that a combination of ”Speed”, ”Distance to Parking Spot”, and ”Sampling

Rate of the GPS Points” yielded the most accurate model, surpassing even those models that

included time variables such as ”hour of the day” and ”day of the week”.

Figure 4.5: Feature Importance Analysis Using Leave-One-Out Method. Each bar represents

the f1 score of the predictive model when a specific variable, as labeled on the x-axis, is excluded.
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Figure 4.6: Evolution of Model Performance with Added Variables

This observation is visually represented in Figure 4.6, where the model’s performance is plotted

against the order of variable addition, as represented on the X-axis. It is clear from the figure

that the addition of subsequent variables in addition to speed, sampling rate, and distance did

not contribute to any significant performance gains.

A possible explanation for this result is that these three variables - distance to parking spot,

speed and sampling rate - (as well as their lagged values and also in their combination), may

serve as proxy variables for a range of other potentially relevant variables. For example, as

mentioned, speed and lagged speed, in combination with the sampling rate, contain information

on acceleration. Speed and acceleration of a vehicle may already include information on the

traffic situation (hour and day), the area type, and the weather.

Given this observation, the input features for the final model include only the distance to parking

spot, the vehicle speed, and the sampling rate of the GPS points. This not only streamlined

the model but also improved its simplicity and generalizability. By focusing on a concise set of

impactful features, we ensure that our model remains adaptable and applicable across a wide

range of datasets and scenarios. These choices result in a set of 13 distinct input features for

each data point, ensuring the model remains robust yet efficient. The details of these input

features are outlined as follows:

• Current Distance to Parking Spot: For a point at timestamp ”t”, the model considers

the vehicle’s distance to parking spot. This variable is crucial as it helps predict the like-

lihood of a driver beginning a parking search, with closer proximity potentially indicating
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imminent parking behavior.

• Six Speed Measurements (one contemporaneous and five lagged values): The

speed at the current timestamp ”t” and the speeds at the five preceding timestamps (t−1,

t − 2, t − 3, t − 4, t − 5) are essential inputs. These speeds reveal dynamic changes in

driving behavior, which are key indicators of parking search. For instance, slowing down

near potential parking spaces or maintaining a consistent low speed can suggest that the

driver is searching for parking.

• Six Sampling Rate Measurements (one contemporaneous and five lagged val-

ues): The sampling rate at which the speed and position data are captured is integral to

the model. Different sampling rates may result in different patterns for speed variation

before starting the parking search. This variable is considered at timestamp ”t” and for

the previous five timestamps (t−1, t−2, t−3, t−4, t−5). Additionally, by integrating the

sampling rate alongside with speed, the model indirectly captures changes in acceleration,

which can be beneficial in driving mode recognition (Janidarmian et al., 2017).

This carefully selected set of input features allows the model to effectively analyze and predict

parking behavior by leveraging critical aspects of driving data. By focusing on only tree main

variables, the model maintains high predictive accuracy and efficiency in identifying parking

search patterns while being generalized to other data sources. To make the model usable for

others, we have published the model publicly on GitHub [github.com/ReLUT/parking-search-

prediction].

The evaluation results, divided by different sampling rates, are presented in Table 4.5. The

model shows superior performance across various sampling rates, with a negligible deviation

between actual and predicted MPSD and an MAE of less than one minute. This indicates the

model’s ability to predict individual PSD with an average error margin of under one minute,

confirming its reliability and accuracy in predicting parking search.

A more detailed look at the results in Table 4.5 reveals subtle variations in the MPSD predictions

across different sampling rates. For instance, while the 1s and 5s sampling rates yield identical

MPSD predictions, a slight deviation is observed as the sampling rate increases to 10 s and 15 s.

This could be attributed to the reduced granularity of data at higher sampling rates, which might

impact the model’s ability to capture the complicated details of parking search behavior. The

variations in predictions at different sampling rates underscore the importance of selecting an

appropriate sampling rate, ensuring that the model is fed with data that is sufficiently detailed to

capture the nuances of parking search behavior while being computationally feasible. In general,

we can conclude that as the sampling frequency decreases the prediction accuracy decreases.

The model demonstrates significant performance at an aggregated level, closely approximating

the actual MPSD in its predictions. To further assess the model’s efficacy, particularly at an

individual level, we conducted an additional analysis (for the 1s sampling rate dataset) comparing

it against a baseline model that consistently predicts the overall MPSD of 01:26 as the parking

search duration for every instance. The baseline model, applying a simplistic approach of using
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the average MPSD as the prediction for all data points (Brownlee, 2016), resulted in a MAE

of approximately 80 seconds. In contrast, our neural network model achieved an MAE of 52

seconds. This comparison indicates a significant reduction in prediction error by 28 seconds per

instance, underscoring the enhanced accuracy of the neural network model over the baseline

approach.

This improvement is particularly noteworthy because it demonstrates the neural network’s abil-

ity to effectively learn and adapt to the complexities embedded within the GPS data. Such an

ability is crucial for applications that require precise predictions of parking search times, such

as in the development of smart urban mobility solutions where even small gains in prediction

accuracy can lead to better traffic management and enhanced urban planning. The comparison

also highlights the model’s robustness in handling individual variability in parking behavior,

which is often masked by aggregated data.

Given that approximately two-thirds of our dataset originates from Frankfurt, there is a potential

concern that our model could exhibit a bias toward this geographic area. However, it is important

to note that we have not incorporated any explicit spatial characteristics specific to Frankfurt

into the model. Instead, the influence of this city in our model could potentially arise indirectly

through other variables, such as driving speed, which might reflect urban driving conditions

peculiar to Frankfurt.

To assess and control for possible geographical bias, we undertook an evaluation strategy. Ini-

tially, we trained our model on the entire dataset, encompassing all recorded journeys. Subse-

quent predictions of parking search duration were then analyzed to compare the model’s perfor-

mance for trips within Frankfurt against those outside it. This comparison involved calculating

the MAE for both sets of trips.

The results of this analysis were enlightening. The MAE for trips within Frankfurt was found

to be approximately 52 seconds, while the MAE for trips conducted outside of Frankfurt was

notably lower, at about 40 seconds. This disparity could suggest that the model is slightly more

conservative in its error margin for Frankfurt, possibly due to the denser and more complex

urban environment. However, the relatively close performance metrics indicate that the model

maintains a commendable level of accuracy and reliability when applied to other regions.

This finding is critical as it confirms that the model’s predictive capabilities are not overly

tailored to the Frankfurt environment. The similar levels of precision achieved both within

and outside Frankfurt underscore the model’s applicability and effectiveness for other cities in

Germany. Such robustness enhances the model’s utility as a tool for urban mobility analysis and

planning across diverse urban settings, not just confined to the context in which it was primarily

developed.
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Table 4.5: Model Validation (Duration in MM:SS Format)

Data Sampling Rate MAE MPSD (Actual) MPSD (Predicted)

1s 00:52 01:26 01:27

5s 00:52 01:26 01:27

10s 00:54 01:26 01:26

15s 00:56 01:26 01:23

4.5.2 External Test Dataset

The ultimate goal of our predictive model is to ensure its applicability and reliability across

various data sources, thereby enhancing its utility in diverse research and practical contexts. To

assess the model’s performance and evaluate its predictive capabilities on other data sources, we

conducted additional field experiments, namely extended park-and-visit experiments, to gather

additional labeled parking search data through a different smartphone application and involving

distinct drivers.

Park-and-Visit experiments are foundational tools used to measure how long it takes for drivers

to find parking in a controlled setting (Polak & Axhausen, 1992). Typically, these experiments

involve selecting a group of volunteer drivers who are asked to find parking in a specified area

while their actions are monitored. The core objective is to understand parking search behavior

under different conditions—such as during peak traffic hours, in various types of parking lots

(like on-street versus off-street), or under different pricing strategies. Researchers use these

experiments to gather data on the duration of parking searches, the routes taken by drivers, and

the effect of various interventions on parking efficiency.

Traditionally, Park-and-Visit experiments control several variables to standardize the conditions

under which data is collected. This often includes setting a predefined starting point for the

search, which might be a certain distance from the desired destination or directly at the desti-

nation itself. Researchers might also control for the time of the day, the type of parking being

searched for, and other factors to ensure that the data can be reliably compared across all par-

ticipants. This method has been cited in various studies (Zhu et al., 2020; Alemi et al., 2018)

and is valued for its ability to provide clear, quantifiable insights into parking behavior under

controlled experimental conditions.

While traditional methods offer valuable insights, they also come with significant limitations.

The major drawback is that by controlling many aspects of the parking search, these experiments

may not accurately represent the true diversity of strategies and decisions made by drivers in

real-life scenarios (Belloche, 2015). For example, in real-world conditions, drivers may choose

different starting points based on their prior knowledge of the area, anticipated parking diffi-

culties, or even personal preferences for walking distances. Such dynamic decision-making is

constrained in a traditional fixed-start experiment.

130



To bridge the gap between experimental control and real-world variability, we introduced the

”Dynamic Park-and-Visit Experiment”. This approach allows drivers to choose their starting

points for parking searches. In this modified methodology, participants are given real-world

tasks, such as driving from a shopping center to an office building, and are free to start their

search for parking at any point along their journey, reflecting a typical decision-making process

that drivers undergo daily. This approach is particularly valuable in urban studies, where

understanding the decision-making process on starting point of the parking search is of significant

importance.

The dynamic park-and-visit experiment was conducted between November 2020 and June 2021,

resulting in the collection of 161 distinct journeys. These experiments were carried out mostly

in cities of Frankfurt and Rostock in Germany, with 96 and 63 journeys each, respectively.

The data collection was facilitated by five drivers, who were either students or colleagues of the

authors. The drivers were assigned specific origin and destination points, covering a wide array

of locations including shopping centers, office buildings, residential areas, and places for leisure

activities. During the experiment, drivers were given the freedom to start their parking search

from any point along their journey from the origin to the destination, based on their personal

preferences and familiarity with the area. They were also free to choose any available parking,

be it on-street or off-street. The precise moment when the driver began the parking search was

recorded by the driver. Additionally, the entire route, including the search for parking, was

tracked using the GPS functionality of the OsmAnd app7 on the driver’s smartphone.

Apart from tracking the journey, drivers provided further information, including whether the

drivers were familiar with the destination area, their reasons for choosing a particular parking

spot, and other contextual details. Information such as the type of parking chosen and the

prevailing weather conditions were also recorded, adding layers of contextual data to the GPS

traces.

Within our dataset, 57 trips, representing approximately 35% of the total, recorded a parking

search duration of 0 seconds. The parking search durations in our dataset varied significantly,

with an average search time of 1 minute and 20 seconds. The distribution of these times revealed

that the median parking search duration was notably shorter, at just 30 seconds, indicating that

half of the parking searches were completed quite quickly. The 75th percentile was observed at 1

minute and 40 seconds, suggesting that most parking searches were relatively brief. However, the

maximum recorded parking search duration extended up to 22 minutes, highlighting occasional

challenges faced by drivers in finding suitable parking spaces.

More information on the parking events are summarized in Table 4.6, which details the types of

parking locations used, the familiarity of drivers with their destinations, the legality and cost of

parking spots, and the distribution of parking events over different times of the day.

7https://osmand.net/

131



Table 4.6: Summary of Categorical Data from Dynamic Park-and-Visit Dataset

Category Count Percentage

Parking Location Type

On-street 118 73.3%

Off-street 43 26.7%

Familiarity with Destination

Familiar 21 13.0%

Not Familiar 140 87.0%

Parking Type

Free 146 90.7%

Paid 12 7.5%

Illegal 3 1.9%

Time of Day

Morning [06-10] 9 5.6%

Noon [10-14] 53 32.9%

Afternoon [14-18] 30 18.6%

Evening [18-22] 68 42.2%

Night [22-06] 1 0.6%

Total Journeys 161

This external test data serves as a resource for evaluating the model’s predictive accuracy. We

made this dataset publicly available and published on GitHub [github.com/ReLUT/parking-

search-prediction] to be used for prediction purposes and further investigations by other re-

searchers.

Upon applying our final model to this dynamic park-and-visit dataset, we observed promising

results. The model, trained comprehensively using all data from the start2park app, effectively

predicted parking search durations for all journeys in the dataset. We calculated the MAE at 39

seconds. Furthermore, the deviation between the actual MPSD and the predicted MPSD was

remarkably low, at only 17 seconds. These error metrics are consistent with those achieved during

the training and testing phases with the start2park dataset, thereby confirming the model’s

adaptability and predictive accuracy when applied to datasets from varied sources. Figure 4.7

provides a visual representation of an example journey along with its predicted labels.

The minor difference between predicted and actual values, as indicated by the MAE and MPSD,

validates the model’s ability to accurately predict PSDs, even when applied to data collected

under varied conditions and contexts. This validation not only confirms the model’s robustness

but also enhances its utility and reliability in further research and practical applications.

4.5.3 Comparison of the ML Model to Previous Heuristic Methods

Section 2 summarized various methods designed to identify parking search within GPS data, each

with its own foundational assumptions. A thorough comparative analysis is crucial to uncover
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Figure 4.7: An example recorded journey using dynamic park-and-visit approach – Actual labels

(left), predicted labels (right). The actual PSD in this example is 03:33 with an absolute error

of 12s in prediction.

the effectiveness, precision, and applicability of these models. Furthermore, it sheds light on

the advantages, limitations, and best-use scenarios of each. We conduct a detailed comparison

of the parking search identification models explained in section 2. The goal is to highlight the

relative performance of each method in accurately identifying parking search behavior within

GPS data. The models will be evaluated using several key metrics, including:

• Mean Absolute Error (MAE): Measures the average absolute error between predicted

and actual parking search durations.

• Mean Parking Search Duration: Assesses the average duration of parking searches

predicted by the model.

• Median Parking Search Duration: Evaluates the median duration of parking searches,

providing insights into the central tendency of the predicted durations.

• Mean Parking Offset Radius: Analyzes the average distance between the parking spot

and where the model predicts parking search begins.

The analysis will involve applying each method to the same dataset, ensuring a uniform basis for

comparison. The predictions from each model will be evaluated against our Ground Truth data,

providing a solid framework for assessing their accuracy and reliability. The metrics mentioned

above will serve as the foundation upon which the performance of each method will be assessed,

offering a comprehensive view of their capabilities. In each approach, the parking search is

identified as follows:

• Approach 1 - Naive 200 m Radius: Assumes parking search begins when the driver

reaches a 200 m distance to the parking spot.

• Approach 2 - Speed Threshold: Identifies parking search when average vehicle speed
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across 5 consecutive points drops below 23 km/h, given the standard deviation remains

under 5 km/h.

• Approach 3 - First Local Minima: Determines the onset of parking search at the

initial local minimum in the distance to the parking spot profile within a 400m vicinity of

the parking spot. It assumes that during regular driving, the distance to the parking spot

should typically decrease. The first deviation from this trend, i.e., the first time the dis-

tance to the parking spot increases, within a specified radius, indicates the commencement

of the parking search.

• Approach 4 - Actual-Shortest Path: Identifies parking search excess duration by

comparing the actual path and the shortest path, noting how much they diverge. The

shortest path is estimated using Google Maps Direction API considering the predicted

traffic condition during the time and day of the journey.

• Approach 5 - Machine Learning Model: Uses the neural network model to predict

parking search route based on various GPS point attributes. The model architecture is

explained in section 4.5.1.

Table 4.7: Comparative Analysis of Performance in Identifying Parking Search in GPS data of

Different Methods

(Duration in MM:SS Format)

MAE Mean PSD Median PSD Mean Parking Offset Radius (m)

Ground Truth - 01:25 00:50 120

Approach 1:

Naive 200 m Radius
01:06 02:21 01:40 -

Approach 2:

Speed Threshold
01:22 02:38 01:56 225

Approach 3:

First Local Minima
01:10 01:39 00:47 68

Approach 4:

Actual-Shortest Path
- 02:05 01:46 -

Approach 5:

Machine Learning Model
00:48 01:26 01:08 87

The results of the comparative analysis are presented in Table 4.7. A clear standout from

the results is the Machine Learning (ML) model, or Approach 5, which demonstrates best

performance by achieving an MAE of just 48 seconds — notably the lowest among all methods

explored. This implies that the ML model has the smallest average error margin, thus providing

predictions that are closest to the actual values observed in the ground truth. Moreover, it

records a Mean PSD of 1 minute and 26 seconds, which is impressively close to the ground

truth’s Mean PSD, showcasing its ability to predict parking search durations with a high degree

of accuracy and consistency at an aggregate level.

Approaches 1 (Naive 200m Radius) and 2 (Speed Threshold) exhibit higher MAEs and Mean

PSDs, hinting at a potential tendency to overestimate parking search durations. This might

come from their relatively simple assumptions and a possible inability to adapt to the varied
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parking search behaviors exhibited by different drivers. Additionally, while Approach 1 does not

offer insights into the Parking Offset Radius, Approach 2 seems to overestimate it.

Approach 3 (First Local Minima) yields interesting results. Despite its higher MAE and an

overestimated Mean PSD, its Median PSD aligns quite closely with the ground truth. This might

suggest that Approach 3 can provide a decent estimate for the typical PSD within a dataset,

even though the Parking Offset Radius calculated using this method seems to be significantly

underestimated.

Approach 4, which measures the extra time spent driving due to parking search, is not directly

comparable to the ground truth data. However, if we assume that any difference between actual

and shortest paths should be calculated only after the parking search has begun —since any route

taken before that is the driver’s initial preference regardless of parking search route choice—

the excess duration calculated by Approach 4 should be equal to or less than the actual parking

search duration. When we look at the data as a whole, we notice that the average duration

estimated by Approach 4 tends to be higher than both the Mean and Median PSD of the ground

truth, suggesting it might overestimate the excess travel time due to parking search.

While the ML model shines as the top-performing approach in accurately identifying parking

search within GPS data, it is vital to recognize the intricate and data-dependent nature of this

method. The effectiveness of the ML model is fundamentally linked to the quality and volume

of the ground truth data available for training, which can be notably challenging to obtain in

both high quality and substantial quantity. Moreover, Approach 3, despite its limitations, has

demonstrated commendable results among the heuristic approaches, securing its spot as the

second-best approach. Surprisingly, the next position is occupied by Approach 1, which has

outperformed Approach 2 across all compared metrics. This suggests that Approach 1 might

serve as a viable first step for an initial exploration of data.

In order to evaluate the performance of the different approaches more comprehensive, Figure

4.8, compares the distribution of predicted search durations by each method against the ground

truth data. Our analysis reveals that while our model shows an increment in prediction errors

for shorter durations, its overall accuracy across all durations—short, medium, and long—is

superior.

Hence, detecting very short parking searches remains a challenge also for the ML model. This

aspect is crucial, as short search durations are often less predictable and can vary more dra-

matically than longer searches, making them inherently difficult to model with high accuracy.

The ML model’s strength lies in its ability to handle longer search durations effectively, where it

matches or exceeds the performance of heuristic methods. As parking search durations increase,

the performance gap between our ML model and other heuristic approaches narrows (Figure

4.8). This indicates that both heuristic and our proposed ML model are likely to perform well

in scenarios known for extended search times, such as during peak hours or in densely congested

areas, with ML model still being superior.
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However, the broader application of our ML approach becomes particularly advantageous when

considering its use across various urban environments and times. Unlike heuristic methods that

may require adjustments or recalibrations based on specific urban contexts or time variations,

our ML model maintains consistent performance due to its training across a diverse set of data

inputs.

In practical terms, this means that our model offers a robust tool for urban planners and traffic

management systems to understand and predict parking behaviors in a comprehensive manner.

By excelling in aggregate-level performance, the model provides reliable insights that can inform

the development of more effective parking management strategies and urban planning solutions.

4.6 Large-Scale Application

4.6.1 INRIX Dataset Description

As mentioned, one major drawback of our ground truth data is its lack of representativeness. A

possible approach to dealing with this issue is to apply the ML model to a large-scale dataset,

which may even be representative.

The extensive dataset of GPS trajectories used in this study is provided by the private company

INRIX. The initial provided dataset contained approximately 18 million journeys with billions

of GPS points either originating, ending, or passing through a bounding box around Frankfurt

am Main in 2019. The dataset incorporated a variety of vehicle types, both from individual

consumers and fleet operations. The fleet segment comprised mainly of delivery trucks, taxis,

ride-sharing vehicles, and essential service vehicles such as police cars, ambulances, and fire

trucks. The dataset incorporated diversity not only in terms of vehicle function but also in size,

classifying vehicles as light, medium, or heavy based on their weight.

For the purpose of this research, we streamlined the dataset to focus on:

• Consumer Trips: To understand patterns relevant to most daily commuters and city

dwellers.

• Light-Weight Vehicles: Offering insights specifically about the majority of vehicles on the

road.

• Trips ending in Frankfurt: Ensuring that only trips are taken into account which end as

parking within Frankfurt.

After filtering, the dataset encompassed 868,561 journeys, a vast treasure of data that promises

to shed light on previously undiscovered aspects of parking search behavior in Frankfurt. The

sampling rate ranges from a median of 6 seconds with a 5% percentile of 4 seconds and a 99%

percentile of 20 seconds. Journey distance shows a broad range with a median of 15.2km. The

shortest 5% of journeys are barely over a kilometer, while the longest 1% stretch over 310 km.

On average, a journey lasts 35 minutes. However, 5% of journeys are as short as 3 minutes, while
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Figure 4.8: Comparative Distribution of Predicted Parking Search Durations for Various Heuris-

tic Approaches and the Machine Learning Model Against the Ground Truth Data. (Purple color

indicates overlapping.)
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the top 1% can last up to 195 minutes. A mean value of average speed of 49 km/h is noted.

The 5% percentile is only 12 km/h, whereas the fastest 1% average speed is approximately 121

km/h. Further details of the dataset can be seen in Table 4.8.

Table 4.8: Descriptive Statistics of the Studied Dataset for Parking Search Behavior Analysis

count mean std 5% 25% 50% 75% 95% 99%

Sampling Rate (sec) 868,561 9 5 4 4 6 14 16 20

Journey Distance (km) 868,561 40 63 1 5 15 41 183 310

Journey Duration (min) 868,561 35 39 3 11 22 42 119 195

Journey Average Speed (km/h) 868,561 49 29 12 24 42 70 104 121

The dataset paints a vivid picture of Frankfurt’s hourly and weekly traffic patterns. Early

weekdays, generally witness a higher volume of journeys ending in Frankfurt in the mornings,

peaking around 8-9 AM. However, as the week progresses towards the weekend, a shift is observed

with higher volumes during the later parts of the day. The least number of journeys ending in

Frankfurt occur between midnight and 5 AM, with a pick after that, highlighting the city’s

morning rush. A steady volume of journeys is observed in the afternoon, with a slight peak

around 5-7 PM, indicating the evening rush.

The depth and granularity of this dataset offer a remarkable scope to explore parking search

behavior in Frankfurt. To the best of our knowledge, no prior research has leveraged such an

extensive dataset for this specific purpose.

4.6.2 Insights and Statistics

The parking search model was applied to our dataset, encompassing 868,561 journeys. Within

this dataset, a significant 33% (or 285,594 journeys) reported a PSD of zero. This indicates

that for nearly one-third of the journeys, drivers found parking immediately upon reaching their

destination.

Considering the entire set, the mean PSD is 1 minute and 30 seconds with a median PSD of 15

seconds. Focusing on the 582,967 journeys that did face a non-zero PSD, the mean increases to

2 minutes and 15 seconds with a median of 42 seconds. The data distribution, as depicted in

Figure 4.9, is predominantly right-skewed, indicating that while the majority of drivers either

found parking immediately or within a short span of time, the top searchers spent a considerable

time finding a vacant parking spot. Highlighting the experience of the 95th percentile, these

drivers searched for a significant 8 minutes and 20 seconds. A holistic view of these statistics is

presented in Table 4.8.

Parking Offset Radius captures the distance between the starting point of the parking search

and the eventual parking spot. This variable is a proxy for the acceptable waking distance by

the driver (see the discussion in Section 4.3.3). For journeys with a non-zero PSD, the mean
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Figure 4.9: Histogram of Predicted Parking Search Duration (left), Histogram of Predicted

Parking Offset Radius (right)

Parking Offset Radius stands at 143 m, but this distance stretches to a significant 309 m for

the 95th percentile. Peaks observed in Figure 4.9 at the distances 60 and 110 m might indicate

varying driver strategies. Table 4.9 reveals that a substantial 50% of drivers embark on starting

parking search within a practical range of 76 to 199 m from their final parking spot, which seems

to be a plausible range of walking distance for many people.

Furthermore, an examination of the GPS speed data surrounding the parking areas can offer

insights into driving behaviors. When we study the average speed of GPS points within a 1 km

radius of the parking spot, a marked decrease from 31 km/h to 17 km/h is evident, as illustrated

in Table 4.10. This slowing down indicates the transition from regular driving to a more cautious

parking search mode and is almost equal to the values in the training ground truth data (Table

4.3).

Using spatial analysis, we can gain new insights into Frankfurt’s urban mobility trends. Figure

4.10 presents a heatmap showing the MPSD for street segments based on parking spots found in

them in the city center. This visual representation begins with mapping street segments from the

Open Street Map, followed by associating nearby parking spots with these segments. The MPSD

is then calculated as an average of the parking search durations for trips ending at each street

segment. This representation, enhanced and smoothed using the spatial lag technique (Rey

et al., 2023), offers a detailed view of the parking landscape. By building a weighted average

of the values of all the neighboring street segments, the spatial lag ensures that each street’s

MPSD value reflects not just its isolated scenario but also the influence of its surroundings. This

approach recognizes that drivers usually search for parking over a larger area, not just a single

street segment.

For instance, the ”Innenstadt” (city center) and ”Altstadt” (old town) areas in Frankfurt show

notably high MPSD values despite the presence of multiple parking facilities. These regions are

central shopping, dining, and other leisure activity zones in Frankfurt, which can explain the

heightened parking demand. Encouraging better use of existing parking facilities here might

ease the on-street parking situation.
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Table 4.9: Descriptive Statistics of Predicted Parking Search Duration and Parking Offset Radius

(Duration in MM:SS format and Distance in Meters)

count mean std 5% 25% median 75% 95%

Parking Search Duration (All Trips) 868,561 1:30 3:16 0:00 0:00 0:15 1:55 8:20

Parking Search Duration (Trips with PSD>0) 582,967 2:15 3:46 0:00 0:20 0:42 3:30 10:30

Parking Offset Radius (Trips with PSD>0) 582,967 143 87 63 80 127 190 309

Table 4.10: Descriptive Statistics of Speed of GPS points within 1km of the Parking Spot during

Normal Driving and Parking Search (Speed in km/h)

count mean std 5% 25% median 75% 95%

All Points 32,156,859 27 21 2 11 24 39 63

Normal Driving 23,324,499 31 21 3 15 29 43 69

Parking Search 8,832,360 17 14 1 5 14 26 43

Figure 4.10: Spatial Heatmap of Mean Parking Search Duration Showing the Frankfurt City

Center, Parking Garages are Shown in Blue
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4.7 Conclusion

In this study, we conducted an in-depth analysis of parking search prediction, a topic with

profound implications for urban planning, traffic management, and transportation science. We

proposed a novel machine learning model to identify parking search patterns in GPS data,

marking the first time such a model has been trained and validated using two sources of ground

truth data. Subsequently, our model’s performance was benchmarked against existing models

from the literature, demonstrating superior performance. Finally, it is applied to a comprehen-

sive dataset, producing aggregated statistics and insights into the parking search patterns of

Frankfurt.

To facilitate this, we collected 3550 GPS trajectories using a specially designed smartphone app.

This app captured the exact time and location of the journey’s origin, the onset of the parking

search, the parking spot, and the final destination, all based on the driver’s input. Using this

ground truth data, we trained a deep learning neural network model that considered speed,

sampling rate, and distance to the parking spot to pinpoint the parking search route within a

trajectory. Through a 10-fold cross-validation, our model achieved an MAE for parking search

duration (PSD) of under one minute, with a negligible discrepancy between actual and predicted

mean parking search durations (MPSDs) in test sets.

Our model is further evaluated using a dynamic park-and-visit dataset, comprising 161 journeys

collected by different drivers and a different application. The predictions mirrored our earlier

results, both at the aggregated level for MPSD and at the individual level for MAE of PSD.

We explored distinct approaches to identifying parking search in GPS data. The Naive 200m

Radius approach made a straightforward assumption that the parking search commences within

a 200m radius of the eventual parking spot. The Speed Threshold method identified the com-

mencement of the parking search based on a specific drop in vehicle speed. The First Local

Minima method likely employed a strategy of pinpointing local minimum values of distance to

the parking spot indicative of parking searches. The last and arguably the most sophisticated

approach was grounded in our machine learning model, aiming to harness the power of data and

algorithms to predict PSDs.

Our comparative analysis clearly showcased the strengths and limitations of each model. Among

them, our proposed machine learning model outperformed the other methodologies, underscoring

the potential of machine learning in addressing complex transportation challenges. However, it

is essential to recognize that while machine learning offers promising results, its effectiveness is

intertwined with the quality and quantity of the data it is trained on.

Applying our model to a large GPS dataset, which included over 860,000 trajectories ending

in Frankfurt in 2019, yielded more insights. Approximately 33% of these journeys had a zero

PSD, while the remaining had an MPSD of 2 minutes and 15 seconds. The overall MPSD was

1 minute and 30 seconds, with a median PSD of 15 seconds. Furthermore, spatial and temporal

analyses identified areas with high MPSD, as visualized in heatmaps. Such areas could benefit
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from urban interventions like augmented parking infrastructure or improved parking and traffic

management. The insights gleaned from these representations can also guide the establishment

of new parking zones, potential pricing adjustments, and even the redirection of traffic flow.

Our parking search prediction model has broader applications. It can be integrated into naviga-

tion apps to detect the onset of parking search in real-time, offering drivers immediate updates

on parking conditions and alternate routes. In addition, most navigation apps overlook the

effect of parking search when estimating journey durations for private vehicles. By accounting

for parking search, users can make more informed comparisons between transportation modes.

This might lead to a decline in private car usage in favor of alternatives like cycling or public

transport, thereby reducing parking search, overall traffic, and emissions.

In alignment with our commitment to open-source and open data, we have made the park-

ing search prediction model publicly available. It is published as open-source on our GitHub

account [github.com/ReLUT/parking-search-prediction]. Furthermore, the dynamic park-and-

visit dataset is also shared as open data in the aforementioned repository.

Despite our study’s advancements in predicting PSDs, it has limitations. Urban landscapes are

constantly evolving, with a steady stream of data, emerging technologies, and new infrastructure.

Consequently, prediction models like ours may quickly become obsolete and require retraining

with fresh ground truth data, a process that can be effortful. Moreover, data bias arising

from user forgetfulness and the potential behavioral changes due to the monitoring effect (also

known as the Hawthorne effect) present additional limitations. These factors can skew the data,

impacting the model’s performance. In future research, we aim to integrate our parking search

prediction model into navigation apps or in-car systems, offering drivers real-time estimates and

transport mode suggestions. Evaluating the impact of such a model within parking information

systems will shed light on its potential to benefit individuals and reduce traffic.
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5 Conclusion

5.1 Summary

This dissertation aims to develop a comprehensive empirical framework for understanding park-

ing search behavior, addressing the main research question: How can parking search behaviors

be measured and analyzed empirically to accurately capture and explore search durations, search

starting points, and search routes? By leveraging data collection methods and advanced an-

alytical models, the research overcomes limitations in existing studies that rely on heuristic

assumptions or incomplete data. The work is structured around three interrelated studies, each

contributing to the overarching theme by focusing on specific aspects of parking search behavior.

Paper I: Initiating the Parking Search

• Contribution: Provides a method to empirically measure and analyze the starting point

of parking searches, directly contributing to the overarching goal of accurately capturing

the initiation phase without relying on assumptions.

• Results and Key Findings: The results underscore the significance of proximity to the

destination in determining search initiation. Drivers tend to delay the start of their search

to minimize walking distance. The lagged speed was also influential; slower speeds increase

the likelihood of both searching and parking immediately. Age, area familiarity, vehicle

type, and journey purpose further modulate these probabilities, reflecting variations in

driver behavior and preferences. Importantly, the study highlights that men are more

likely to start their search sooner but less likely to park immediately compared to women,

suggesting possible gender-based differences in parking preferences.

• Conclusions: This paper establishes a foundational understanding of the factors that

influence the initiation of parking search. The unique dataset and model enable an un-

precedented empirical analysis of this aspect, showing that driver characteristics, journey

purpose, and situational variables like traffic and location significantly affect search initi-

ation timing.

Paper 2: Determinants of Parking Search Duration

• Contribution: Offers a detailed empirical analysis of parking search durations and their

determinants, enhancing the overall framework by providing insights into the temporal

dynamics of parking search behavior.

• Results and Key Findings: The study finds a clear positive duration dependency in

the search for both Free and Paid parking, indicating that as drivers search longer, they

tend to adjust their willingness to accept Paid parking. In contrast, drivers are unlikely
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to switch to Illegal parking unless they had already decided against a lengthy search at

the outset. Demographic factors, journey purpose, and area familiarity also affect parking

choices, with drivers on business trips, for example, more inclined toward Paid parking

due to potential reimbursement. Interestingly, high temperatures correlate with higher

acceptance of Free parking, likely due to increased willingness to walk.

• Conclusions: The analysis shows that drivers’ flexibility in their parking choices grows

with longer search durations. This reflects a trade-off where drivers gradually shift from

seeking Free to Paid parking, depending on situational and demographic factors. The

findings suggest that cities could potentially alleviate parking searches by adjusting Paid

parking availability in areas with high demand for Free parking.

Paper 3: Predicting Parking Search in GPS Data

• Contribution: Enables the application of the empirical framework to extensive historical

GPS datasets, allowing for city-wide analysis of parking search behaviors and overcoming

limitations of small sample sizes.

• Results and Key Findings: The model demonstrates superior performance over existing

methods, such as fixed-radius and speed-threshold approaches. By applying this model

to a large-scale dataset from INRIX, covering over 860,000 journeys in Frankfurt, the

study reveals that approximately one-third of journeys involve immediate parking. For

the remaining journeys, the average parking search duration aligns closely with real-world

experiences, highlighting differences in search behavior by time of day and location.

• Conclusions: This study offers a scalable method for parking search detection that is

adaptable to various urban settings and datasets. The model’s accuracy and reliability

position it as a valuable tool for urban planners and policymakers, who can leverage the

insights to optimize parking infrastructure and mitigate urban congestion.

Each paper contributes uniquely to the overarching theme of parking search behavior and its im-

plications for urban mobility. The first two papers delve into decision-making frameworks, with

the first focusing on initiation and the second on duration, both central to understanding parking

search behavior. The third paper complements these findings by providing a practical tool for

large-scale application. The combined results from these studies provide a comprehensive view

of parking search behavior, bridging theoretical insights and practical implications. The disser-

tation’s findings suggest that parking search behavior is not only a matter of driver choice but is

also shaped by urban context and available technology. This research underscores the potential

for data-driven approaches to optimize parking management, which could ultimately reduce the

negative impacts of cruising for parking on city congestion and improve urban mobility.

5.2 Implications for the Scientific Context

This dissertation contributes to the scientific discussion on parking search behavior by advancing

methodologies and providing empirical evidence in transportation research.
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• Advancing Data Collection Methodologies: By developing data collection meth-

ods utilizing GPS technology and a custom-designed smartphone application, the research

captures precise, real-time data on driver behavior throughout entire journeys. This ap-

proach overcomes the limitations of previous studies that relied on surveys or assumed

start and end points, enhancing data accuracy and completeness. It enables researchers

to study parking search dynamics with greater precision and reliability. Furthermore, the

introduction of dynamic park-and-visit field experiments in Paper III could establish a

new standard for conducting field studies by minimizing assumptions and actively incor-

porating the driver’s decision on the parking search starting point. This approach not

only enhances the accuracy of data but also provides a more realistic representation of

real-world parking behaviors.

• Contributions to the Scientific Discussion on Parking Search Behavior: The

findings deepen the understanding of parking search behavior by examining both the initi-

ation and duration of the search process. Through empirical analysis, this research reveals

how various factors, such as proximity to the destination, driver characteristics, and con-

textual elements, shape parking search decisions. This not only adds to the existing body of

knowledge but also highlights the complexities of parking search behavior that traditional

methods have struggled to capture.

• Advancing Machine Learning and Econometrics Applications: The dissertation

represents an advancement in applying machine learning and econometrics within trans-

portation research. For example, by developing a deep learning neural network model

to identify parking search behavior in GPS trajectory data, it demonstrates how artifi-

cial intelligence can address complex problems in urban mobility. Survival analysis with

competing risks has also rarely been applied in transportation research.

5.3 Policy Implications

While the primary contributions of this research are scientific—advancing methodologies and

providing new insights into parking search behavior—current findings also have the potential to

inform policy design and decision-making. However, it is important to note that new policies

could not be derived directly from these results. Instead, these empirical insights and analytical

tools seem to confirm and support existing policy frameworks already discussed in the literature.

Several ways in which the findings are aligned with and reinforce existing policies are outlined

below. They can be categorized according to the reasons for parking search, which were presented

in Section 1.2.1.

• Increasing the Price of Parking to Reduce Parking Demand: Basic economic

principles suggest that raising the cost of parking can reduce demand. Previous research

(Pierce et al., 2015) demonstrates that dynamic pricing is an effective approach for this.

Findings from Paper III reveal significant variations in parking search patterns across

different city subareas and times of day, supporting the implementation of dynamic pricing

based on current demand in specific locations. Additionally, as noted in the literature,
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the coexistence of both free and paid parking options can inadvertently increase parking

search traffic (Shoup, 2005). This notion is further supported by results from Paper II,

which indicate that drivers often choose paid parking only after failing to find a free spot.

Eliminating this coexistence—by raising the price from zero to a positive amount in cases

of excess demand—may help to reduce overall parking search traffic.

• Real-Time Intelligent Parking Systems to Address Lack of Information on

Availability: As discussed in Section 1.2.1, parking searches may still occur even when

demand equals supply due to a lack of information on parking availability. The literature

already suggests that providing drivers with real-time information on available parking

can reduce search times and help alleviate congestion (Caicedo, 2010; Teodorović & Lučić,

2006; Shin & Jun, 2014). Findings from Paper II support this, showing that drivers familiar

with an area are generally more successful in finding free parking and begin their search

earlier. By offering real-time parking information, especially to drivers unfamiliar with

high-demand areas, cities can reduce inefficiencies in parking searches. This underscores

the importance of policies promoting the development of real-time parking information

systems, an intervention strongly supported in urban planning research (Dalla Chiara et

al., 2022).

• Addressing Mismatches Between Parking Supply and Driver Preferences: Cer-

tain groups of people, such as those with disabilities, often rely on parking spaces that offer

short walking distances or allow brief stops for loading and unloading. Special regulations

already exist for these groups, including designated parking for people with disabilities. In

the future, it is conceivable that these dedicated parking spaces could be made ”smarter,”

dynamically adjusting availability based on real-time demand to serve specific groups, the

general public, or restrict access altogether when appropriate (Fikri & Hwang, 2019).

Beyond directly addressing the causes of parking search, this thesis may also have indirect pol-

icy implications by improving transport models for policy simulations. The findings provide

key measurements of parking search behaviors, such as initiation points, search durations, and

search radius. Additionally, the proposed prediction model offers a framework to identify these

parameters in other unlabeled GPS datasets. These insights can be integrated as parameters

in traffic simulation models used by urban planners and policymakers. For instance, incor-

porating the empirically derived initial search radius into traffic simulations can enhance the

realism and predictive accuracy of models assessing the impact of parking policies. Improved

simulations can better predict outcomes such as traffic flow changes, parking occupancy rates,

and potential congestion, enabling policymakers to assess the effects of proposed interventions

before implementation.

5.4 Outlook

As urbanization continues to accelerate, the challenges associated with parking search behavior

are likely to become more pronounced. With cities growing denser and car ownership remaining
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high, the need for efficient parking management systems will intensify. The research presented

in this dissertation opens several avenues for future exploration and offers a foundation for

addressing parking-related issues in the context of evolving urban mobility trends.

One key direction for future research lies in the integration of real-time data into parking man-

agement systems. While this dissertation has focused on empirically understanding parking

search behavior through the collection and analysis of ground truth GPS data, the next step is

to utilize this knowledge in the development of dynamic parking guidance systems. By integrat-

ing real-time parking availability data with predictive models of search behavior, cities could

offer drivers more accurate and timely information, potentially reducing the time spent cruising

for parking and alleviating congestion. This would not only improve the driver experience but

also contribute to environmental sustainability by reducing emissions caused by unnecessary

driving.

Additionally, the findings from this dissertation could inform the development of smart cities ini-

tiatives, where interconnected urban systems work together to optimize traffic flow, parking, and

overall mobility. As autonomous vehicles become more prevalent, parking search behavior may

shift dramatically, necessitating new models that account for vehicles capable of independently

searching for parking or dropping off passengers before parking themselves. The integration

of machine learning and artificial intelligence will be crucial in predicting and managing these

shifts in behavior, and the models developed in this research provide a starting point for such

applications.

Moreover, the rise of shared mobility and micromobility solutions presents both challenges and

opportunities for parking management. With more people opting for ride-sharing, car-sharing,

and alternative modes of transportation like scooters or bikes, the demand for traditional parking

spaces may change. However, these shifts will require careful monitoring, as new forms of parking

demand may emerge, particularly for vehicles involved in logistics and delivery services, which

are increasingly occupying curbside spaces. Future research should explore how these changes

in mobility patterns interact with parking infrastructure and urban design, ensuring that cities

remain adaptable to the evolving needs of their residents.

From a policy perspective, the insights gained from this research can inform the development

of more equitable and efficient urban parking strategies. Dynamic pricing, congestion charges,

and reallocation of parking spaces can be fine-tuned based on empirical data, leading to better

outcomes for drivers, urban planners and society. Additionally, as cities strive to reduce car

dependency and promote sustainable transportation, there will be opportunities to explore how

parking policies can support these goals, perhaps by encouraging the use of public transit or

active modes of transportation through strategic parking reforms.

In conclusion, the outlook for parking search research and its practical applications is promising.

The findings presented in this dissertation hopefully contribute to a growing body of knowledge

that can help shape the future of urban mobility. As cities continue to evolve, so too must the

models and strategies used to manage parking and traffic flow. By building on the empirical
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insights gained here, future researchers, policymakers, and urban planners may be able to develop

more responsive, efficient, and sustainable solutions to the complex challenges of parking in

modern cities.
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Rodŕıguez, A., Cordera, R., Alonso, B., dell’Olio, L., & Benavente, J. (2022). Microsimulation

parking choice and search model to assess dynamic pricing scenarios. Transportation

Research Part A: Policy and Practice, 156, 253–269.

Rong, Y., Xu, Z., Yan, R., & Ma, X. (2018). Du-parking: Spatio-temporal big data tells you

realtime parking availability. Proceedings of the 24th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining, 646–654.

Ross, T., & Buliung, R. (2019). Access work: Experiences of parking at school for families living

with childhood disability. Transportation Research Part A: Policy and Practice, 130,

289–299. https://doi.org/https://doi.org/10.1016/j.tra.2019.08.016

Saharan, S., Kumar, N., & Bawa, S. (2020). An efficient smart parking pricing system for smart

city environment: A machine-learning based approach. Future Generation Computer Sys-

tems, 106, 622–640.

Saki, S., & Hagen, T. (2024a). Cruising for parking again: Measuring the ground truth and using

survival analysis to reveal the determinants of the duration. Transportation Research Part

A: Policy and Practice, 183, 104045.

Saki, S., & Hagen, T. (2024b). Parking search identification in vehicle gps traces. Journal of

Urban Mobility, 6, 100083.

156

https://doi.org/https://doi.org/10.1016/j.tra.2019.08.016


Saki, S., & Hagen, T. (2024c). What drives drivers to start cruising for parking? modeling the

start of the search process. Transportation Research Part B: Methodological, 188, 103058.

Sándor, Z. P., & Csiszár, C. (2015). Role of integrated parking information system in traffic

management. Periodica Polytechnica Civil Engineering, 59 (3), 327–336.

Satagopan, J., Ben-Porat, L., Berwick, M., Robson, M., Kutler, D., & Auerbach, A. (2004).

A note on competing risks in survival data analysis. British journal of cancer, 91 (7),

1229–1235.

Sattayhatewa, P., & Smith Jr, R. L. (2003). Development of parking choice models for special

events. Transportation research record, 1858 (1), 31–38.
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